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Abstract 

Multiple sclerosis is a complex and costly chronic (“3C”) condition that currently has no cure. In 

a condition like multiple sclerosis, which has an unpredictable course, the use of predictive 

analytics could help health systems learn better, faster, and to improve more effectively and 

predict rather than react to emerging health needs for people with MS. This study compared 

traditional statistical methods to different predictive analytics methods on two separate 

endpoints, MS relapse and all-cause urgent care. Binary logistic regression was compared with 

other machine learning models, specifically ridge, least absolute shrinkage and selection operator 

(LASSO), and random forest. Results indicated when comparing relapse indices across models’ 

random forest significantly outperformed logistic regression and other machine learning 

algorithms (ΔperfA =27.1%, ΔperfM =27.5%). However, for ΔperfF,, logistic regression and 

random forest performed relatively the same. Ridge and LASSO outperformed logistic 

regression (ΔperfM1 =0.9%, ΔperfM2 =9.4%, ΔperfF2=25.8%) respectively. Results indicated when 

comparing all-cause urgent care indices across models, logistic regression performed similarly to 

random forest and LASSO (ΔperfA = -1.1%, ΔperfM =1.58%, ΔperfA1 = -0.5%). Ridge performed 

worse overall compared to logistic regression (ΔperfA2 = -17.8%, ΔperfM2 = -3.84%). 
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Chapter 1 

Introduction 

Multiple sclerosis (MS) is one of the most common chronic neurological conditions for 

adults, with a prevalence of nearly one million people in the United States (Wallin et al., 2019). 

While the exact pathologic mechanism for MS remains incompletely understood, it involves an 

immune-mediated process in which an abnormal response of the body’s immune system is 

directed against the central nervous system (CNS; National Multiple Sclerosis Society, 2019a). 

MS is a complex and costly chronic (“3C”) condition that currently has no cure. The disease 

course is often debilitating, disabling, and unpredictable and causes functional and symptomatic 

impairments including sensory, motor, cognitive, and psychiatric problems and debilitating 

fatigue (Bozkaya, Livingston, Migliaccio-Walle, & Odom, 2017).  

There are four different types of MS, relapsing-remitting (RRMS), primary progressive 

(PPMS), secondary progressive (SPMS), and progressive relapsing (PRMS; National Multiple 

Sclerosis Society, 2019b). Relapsing-remitting MS is the most common disease course with 85% 

of people initially diagnosed with RRMS (National Multiple Sclerosis Society, 2019b). This type 

of MS is characterized by relapses of new or increasing neurologic symptoms which are 

followed by periods of complete or partial recovery (National Multiple Sclerosis Society, 

2019b). Primary progressive MS is defined as worsening neurologic function from the onset of 

symptoms without early relapses or remissions. About 15% of people with MS have PPMS 

(National Multiple Sclerosis Society, 2019b). Secondary progressive MS follows an initial 

relapsing-remitting disease course. People that have RRMS may at some point transition to 

SPMS where there is a progressive worsening of neurologic function over time (National 

Multiple Sclerosis Society, 2019b).  
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MS causes a socioeconomic burden to the individual and society due to the disability of 

the disease (O'Connell et al., 2014). The average total cost of care over 12 months for individuals 

with MS was $51,692 for non-relapsing MS, while the cost for relapse-remitting MS was 

$58,648 (Jones, Pike, Marshall, & Ye, 2016) The most common form of this disease is relapsing 

MS with a relapse of approximately one per year (Vollmer, 2007). Research shows that 

participants with relapsing MS had significantly higher annual costs for physician consultations 

($464; p < .05), hospitalizations ($3,693; p < .05) and total MS costs ($4,390; p < .05) when 

compared to participants with non-relapsing MS (Iezzoni & Ngo, 2007; Jones et al., 2016). 

Clinical Quality Improvement 

The proposed study is part of an MS clinical quality improvement research collaborative, 

the Multiple Sclerosis Continuous Quality Improvement (MS-CQI) Collaborative, which is the 

parent study (See Appendix A). MS-CQI is an improvement research collaborative that employs 

a combination of an improvement collaborative structure and a step-wedge randomized design to 

test the comparative effectiveness of quality improvement (QI) intervention versus usual care. 

The Health Foundation (2009) describes a QI collaborative as requiring five critical features: (1) 

there is a specified topic; (2) clinical experts and experts in quality improvement provide ideas 

and support for improvement; (3) there are multi-professional teams from multiple sites; (4) 

there is a model for improvement that focuses on setting clear and measurable targets; (5) the 

collaborative process involves a series of structured activities (de Silva, 2014; Hulscher, 

Schouten, & Grol, 2009). 

Clinical QI collaboratives can facilitate systems-level change in real-world settings (de 

Silva, 2014; Hulscher et al., 2009.), but data from these collaboratives need to be systematically 

vetted and analyzed using rigorous research designs. MS-CQI is implementing descriptive 
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statistics as well as inferential outcomes analysis across four centers to compare performance. 

Statistical process control (SPC) benchmarking with variation analysis by center is also being 

conducted. Predictive analytics and more advanced statistical techniques can complement and 

may improve upon this current standard.  

Predictive Analytics 

The proposed research study expanded upon the learning health systems (LHS) model 

even further by moving this work towards predictive analytics. MS-CQI was created as the first 

LHS improvement research collaborative for MS, and is addressing some of these deficiencies 

by utilizing a learning health system model that employs integrated improvement and research 

methods, including individual and population levels of analysis and a randomized comparative 

effectiveness design (Oliver, 2019). MS-CQI represents the vanguard of a shift towards the 

inclusion of systems-level approaches to improve MS care and demonstrate value.  

The Institute of Medicine (IOM) and the Institute for Healthcare Improvement (IHI) have 

called for a new systems-oriented focus and continuous improvement culture in the United States 

(IOM, 2001; IHI, n.d.). Nelson’s Balanced Measures “Clinical Value Compass” framework is 

commonly used in healthcare QI because it can specify process, measure systems-level quality, 

and value (Lindblad et al., 2017; Nelson et al., 1995). The framework has four categories: (a) 

clinical outcomes; (b) functional health; (c) patient experience and satisfaction; and (d) 

utilization (Nelson et al., 2016). Predictive analytics could optimize the feed-forward and 

feedback aspects of the MS LHS. In a condition like MS, which has an unpredictable course, the 

use of predictive analytics could help health systems learn better, faster, and to improve more 

effectively and predict rather than react to emerging health needs for people with MS. 
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Predictive analytics introduces a new culture in data analysis. The evolution of 

algorithmic modeling has grown tremendously outside of the field of statistics (Breiman, 2001). 

These algorithms can be used on various datasets and be more accurate than existing data 

modeling approaches (Breiman, 2001). Model selection is different in predictive analytics versus 

traditional statistical modeling approaches. Traditional statistical methods allow one to 

determine, based on subject matter knowledge and/or simple descriptive or inferential statistics, 

what predictors to include in a model. Some of these methods include linear regression and 

logistic regression (James, Witten, Hastie, & Tibshirani, 2013). In predictive analytics the 

combination of test/training data splits or cross-validation, one can assess model error reliably 

(James et al., 2013). Predictive analytics methods, including regularization, and ensemble 

approaches can deal with far larger numbers of predictors in an automated fashion (James et al., 

2013). Some of these predictive analytics methods include ridge regression and least absolute 

shrinkage and selection operator (LASSO) regression (James et al., 2013). Ridge regression and 

LASSO are both shrinkage methods and can be used with many features in the model without 

overfitting (James et al., 2013). Overfitting is when the model is trained and fits well on the 

training dataset, but performs poorly on the test dataset and becomes less generalizable. Both of 

these models shrink or regularize the coefficient estimates or shrinks them towards zero (James 

et al., 2013). By shrinking coefficient estimates, this improves the fit of the model by reducing 

the model’s variance (James et al., 2013). 

Problem Statement 

Historically, MS care has been studied and improved through basic and clinical trials 

research and epidemiological studies on population outcomes and quality of life. MS registries 

such as NARCOMS, MS PATH, and MS link have been developed. Only very recently has MS 
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entered the realm of improvement science and population health. The MS-CQI is the first multi-

center exemplar using a learning health system model that employs integrated improvement and 

research methods, including individual and population levels of analysis (Oliver, 2019). In 

comparison, the MS-Advance study was a single center, non-randomized study and used a 

patient centered medical home as their intervention (Meninno et al., 2018). A multi-center 

approach is needed for a successful collaborative model. 

There is a dearth of research on predicting relapse in MS QI collaboratives using 

predictive analytics, as well as predicting MS all-cause UC utilization. This study is significant 

because it analyzes outcomes of a multicenter MS quality improvement collaborative as well as 

comparing traditional statistical methods to predictive analytics for predicting MS relapse and 

all-cause urgent care (UC) utilization. Relapse and UC utilization are aspects of MS that are 

costly and disabling, and to date, have been largely unpredictable. For this study all-cause, UC 

utilization included all-cause emergency department (ED) visits and all-cause UC visits. 

Purpose Statement 

This study focused on predictive modeling of MS relapse and all-cause UC utilization by 

comparing standard statistical and predictive analytics approaches. The first research aim is to 

determine whether results are similar between traditional statistical methods and predictive 

analytics methods when predicting MS relapse. The second research aim is to determine whether 

traditional statistical methods versus predictive analytics methods results are similar when 

predicting MS all cause-UC utilization. 

Literature Review 

This study analyzes outcomes of a multicenter MS quality improvement collaborative by 

comparing traditional statistical methods to predictive analytics for predicting MS relapse rate 
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and all-cause UC. The literature review summarizes available evidence on: (a) quality 

improvement collaboratives; (b) MS predictive modeling on relapse and all-cause UC utilization; 

and (c) studies on predictive model comparisons. 

Relapsing-remitting MS. Relapse-remitting MS accounts for approximately 85% of MS 

cases (Vollmer, 2017). RRMS is characterized by periods of exacerbations followed by partial or 

full recovery to prior baseline. Longitudinally, a subset of people with RRMS progress into a 

progressive stage called SPMS in which relapses cease, neurological progression continues, and 

recovery is rare (Vollmer, 2007). MS relapses occur on average about 1.1 per year early in the 

course of the disease; however, this rate appears to decrease as the disease progresses (Vollmer, 

2007). Immunotherapy disease-modifying treatments (DMTs) can dramatically reduce the 

relapse rate as well as related brain magnetic resonance imaging (MRI) changes and functional 

neurological progression of disability (Stoppe Busch, Krizek, & Then Bergh, 2017); however, 

DMTs do not cure MS (Stoppe et al., 2017). Disease-modifying therapies are not used to control 

MS symptoms.  

In the early stages of MS, relapses are more likely to resolve to prior baseline. However, 

as the disease progresses, relapses result in incomplete recovery and progressive disability and 

can have a significant impact on the individual’s quality of life (O'Connell et al., 2014). Relapses 

can result in economic cost of health services such as ED visits and hospitalizations (Iezzoni & 

Ngo, 2007). In addition, O’Connell et al. (2014) found the largest component of indirect costs for 

an MS relapse was loss of income due to employment status. Relapses function independently of 

other clinical MS symptoms; however, relapses can worsen MS symptoms and accelerate disease 

progression (Koch-Henriksen, Thygesen, Sørensen, & Magyari, 2019). 
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Improvement science. MS has only recently entered the realm of improvement science 

and population health. Groundwork for this has been established by large epidemiological 

registries, such as the North American Research Committee on Multiple Sclerosis (NARCOMS), 

the Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATH), and 

Multiple Sclerosis Leadership and Innovation Network (MS LINK). NARCOMS is a data 

registry that utilizes patient experience to improve clinical care and quality of life (NARCOMS, 

2017). MS PATH uses technology and collects MS patient data from routine office visits to 

enable MS research (MS PATH, 2016). MS LINK is an interdisciplinary research community 

that is focused on improving the care of an MS individual (Gisler, 2019). Finally, the Slifka 

Longitudinal MS Study researches population demographic and clinical measures of utilization, 

illness, and cost (Minden et al., 2006). 

Historically, MS care has been studied and improved at the basic and clinical trials 

research and epidemiological studies on outcomes and quality of life. These approaches have not 

studied MS care or outcomes at a system (MS Center/MS clinic) level. MS-CQI represents the 

vanguard of this approach utilizing an “improvement science approach.” The improvement 

science approach combines QI with rigorous scientific methodology. 

Continuous quality improvement. The QI approach is a system level approach 

influenced by the IHI, the IOM and the Affordable Care Act. The IHI triple aim specifically 

suggests a new systems-oriented focus and continuous improvement culture (IHI, n.d.). Also, the 

IOM shows significant quality and safety deficiencies in our current health system 

(Nationalacademies.org, 2019).  

To Err is Human: Building a Safer Health System (IOM, 2001) was published in 1999. 

The authors stated that tens of thousands of people in the United States die every year due to 



STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 17 

mistakes that are preventable with their care (IOM, 2001). This publication led to a call for a 

more systems-level change and Crossing the Quality Chasm (IOM, 2001) was published with a 

focus on how the U.S. health system needs to be overhauled to improve the delivery of care to 

PwMS (Fanjiang, Grossman, Compton, & Reid, 2005). The IOM suggests six aims of 

improvement: safe, effective, patient-centered, timely, efficient and equitable (IOM, 2001). Six 

redesign imperatives were notated to drive these areas of improvement: (a) reengineered care 

processes; (b) effective use of information technologies; (c) knowledge and skills management; 

(d) development of effective teams; (e) coordination of care across patient conditions; (f) use of 

performance and outcomes measurement (IOM, 2001). The LHS model was popularized by this 

work, proposing that improvement and research could be simultaneously conducted and better 

outcomes achieved by focusing on system-level performance (Nelson et al., 1995). MS-CQI was 

created as the first LHS improvement research collaborative for MS, and is addressing some of 

these deficiencies by utilizing a learning health system model that employs integrated 

improvement and research methods.  

There are many popular QI approaches that are used nationally among CQI collaboratives 

such as the IHI Model for Improvement, Clinical Microsystems, and Lean Six Sigma (IHI, n.d.; 

Clinical Microsystems, n.d.; Lean Six Sigma Online, n.d.). These different methodologies are all 

utilized in healthcare settings across the United States and when implemented, can have 

significant results. The Clinical Microsystems approach focuses on “microsystems,” which are 

defined as the essential building blocks of larger health system (Clinical Microsystems, n.d.). 

Clinical microsystems complete value-added and hands-on work inside health organizations and 

are living units that have the patient and their needs, front and center (Clinical Microsystems, 

n.d.). This approach builds upon foundational work by business scholar P. Brian Quinn which 
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documented the competitive advantage of businesses that excelled in front-line service 

performance focused on optimizing the capability of “smallest replicable units” or SRUs—

improvement of SRU performance translated into improved overall performance (Quinn, 1992). 

The SRU theory was later adapted for healthcare by Batalden and Nelson to develop the 

microsystems approach. This approach guided the systems-level focus for the MS-CQI study. 

(Nelson, Batalden, Godfrey, & Lazar, 2011). 

Lean Six Sigma’s primary goal is to reduce waste and variation to create an environment 

of optimal quality control (Lean Six Sigma Online, n.d.). This approach includes the use of SPC 

methods to study and improve performance variation – these include the use of SPC for 

benchmarking in improvement initiatives and collaboratives (Benneyan, Lloyd, & Plsek, 2003). 

This approach influenced the benchmarking approach used in the MS-CQI study. The “Model 

for Improvement” is used by healthcare organizations as a framework to accelerate healthcare 

improvement through iterative small tests of change aimed at optimizing but not replacing the 

existing model (“Institute for Healthcare Improvement: How to Improve,” n.d.). The 

fundamental structure of the IHI Model for Improvement includes piloting the changes on a 

small-scale utilizing Plan-Do-Study-Act (PDSA) cycles, see Figure 1 (“Institute for Healthcare 

Improvement: How to Improve,” n.d.). The IHI model is influenced by Kolb’s experiential 

learning model for adult learning and in turn, has influenced modern design approaches 

including human centered design and agile prototyping development (Kolb, 1984). This 

approach influenced the design of the improvement intervention for the MS-CQI study, which 

includes professional improvement coaching and a modified version of the IHI Breakthrough 

Series (BTS) collaborative structure (IHI, 2003) to guide microsystem teams applying PDSA 

cycles to improve system performance.  
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System-level change focus. The current state of the healthcare system in the United 

States has recently moved towards a value-based quality of care (Porter, 2009). In particular, the 

Affordable Care Act is driving a shift from productivity to systems-level value-based 

reimbursement (healthcare.gov, 2019) and suggests that a new paradigm of continuous quality 

improvement will be required to optimize value and quality. It will be necessary to demonstrate 

the value of MS care at systems and population levels, especially in complex, high cost, chronic 

“3C” conditions such as MS.  

De Silva (2014) reported that quality improvement collaboratives facilitate systems-level 

change in real-world settings. Regional and national CQI collaboratives that are utilizing these 

improvement methodologies have demonstrated significant results. The Northern New England 

Cardiovascular Network (NNE) Disease Study Group has used a shared data registry and QI 

methods to reduce mortality and morbidity across cardiac surgery centers in the U.S. (“Northern 

New England Cardiovascular Network Disease Study Group,” n.d.). Research on quality 

collaboratives for hypertension has also been successful. Participating Medicaid managed care 

plans in California reduced the hypertension of their patients (Backman et al., 2017). There was 

an increase of 5% in their rates of controlled hypertension (Backman et al., 2017). 

The Vermont Oxford Neonatal Health Network (VONHN) is a nonprofit collaboration of 

health care professionals as an interdisciplinary community to change the landscape neonatal 

care (Vermont Oxford Network, n.d.). The goal of VONHN is to improve the safety, quality, and 

value of care for newborn babies and their families through a collaboration program of 

education, quality improvement, and research (Vermont Oxford Network, n.d.). The 

Inflammatory Bowel Disease (IBD) Qorus is a collaboration between patients and healthcare 
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providers to improve quality care and improved outcomes for people with IBD (Crohn’s & 

Colitis Foundation, n.d.).  

The Cystic Fibrosis Foundation (CFF) Learning and Leadership Collaboratives (LLCs), 

where 110 centers have participated in a national QI collaborative for over a decade. The CFF 

utilizes QI methods as well as a systems-level registry. The CFF collaboratives have had success 

in reduced mortality, improved life expectancy, decreased morbidity, and developed several 

process quality indicators (Godfrey& Oliver, 2014; Marshall & Nelson, 2014; Mogayze et al., 

2014; Sabadosa & Batalden, 2014).  

The differentiating characteristic of MS-CQI is that it includes a randomized research 

design. The prior collaboratives are cohort designs such as VONHN or do not have research 

designs (CFF, IBD). The MS-CQI is the vanguard effort for improvement science in MS because 

it builds upon these prior exemplars by merging QI and randomized research approaches. 

Additionally, current evidence suggests that improvement collaboratives and improvement 

coaching are equally effective in achieving success in clinical outcomes (Gustafson et al., 2013). 

Also, Gustafson and colleagues (2013), discuss that combining both coaching and improvement 

collaboratives optimize results since the components are additive. The MS-CQI intervention is 

based on the utilization of an improvement coach in combination with an improvement 

collaborative model. 

Parent study design. The parent study (MS-CQI) is utilizing a prospective step-wedge 

randomized design, which is also referred to as a Comprehensive Dynamic Trial (West et al., 

2008). The step-wedge cluster randomized trial design has become increasingly popular within 

clinical trials, and can be used in the evaluation of service delivery type interventions (Hemming, 

Haines, Chilton, Girling, & Lilford, 2015). In addition, the step-wedge design allows for 
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comparisons within microsystems and can better accommodate smaller sample sizes (West et al., 

2008). In a standard step-wedge design, clusters randomly and sequentially crossover from 

control to intervention until most or all of the clusters are exposed to the intervention. At the 

beginning of the trial, no clusters are exposed (Hemming et al., 2015). After a baseline period, 

cluster(s) are successively randomized in a step-wise fashion to go from control to intervention 

until most or all the clusters have been exposed (Hemming et al., 2015). Therefore, each cluster 

is part of the control and intervention, which allows robust scientific evaluation in shorter time 

periods and with fewer clusters than standard cluster-randomized designs (Hemming et al., 

2015).  

The intervention employed by MS-CQI is a modified IHI Breakthrough Series clinical 

quality improvement (CQI) intervention, which augments the traditional BTS model by adding 

professional improvement coaching to accelerate front-line improvement capability (IHI, 2003; 

Oliver, Messier, & Hall, 2019). The IHI Breakthrough Series, CQI intervention with Professional 

Improvement Coaching was coordinated by clinical teams at participating sites under the 

guidance of a professional improvement coach utilizing the IHI improvement collaborative 

model. This intervention is a hybrid adaptation of the LLC and CFF (Godfrey & Oliver, 2014). 

The general structure and process, as outlined by and the IHI Breakthrough Series improvement 

collaborative model, was utilized for this intervention (Kilo, 1998; see Appendix A).  

The core MS-CQI study used descriptive statistics as well as inferential outcomes 

analysis to assess performance across the four centers and between exposure (QI) and control 

(usual practice) conditions. The SPC benchmarking with variation analysis by center is also 

being conducted. The proposed study built upon the parent study and focused on predictive 
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analytics and more advanced statistical techniques that can complement and improve upon 

current MS-CQI analysis.  

Predictive statistical modeling. In MS, relapses have been a focal point of research; 

however, there is a dearth of research on predicting MS relapses. Research has been used to 

determine predictors of MS relapse rate utilizing Poisson regression using demographic, clinical, 

and MRI variables (Held, Heigenhauser, Shang, Kappos, & Polman, 2005). Held et al.’s (2005) 

study included 821 participants from the placebo group of the Sylvia Lawry Centre for Multiple 

Sclerosis Research (SLCMSR) and was aimed at determining prognostic factors available at 

baseline to the on-study relapse rate in MS. The timeframe of the study included 24 months prior 

to the study baseline and the MS disease course. The univariate analysis included 10 predictors 

for predicting the on-study relapse rate (Held et al., 2005). Results of the univariate analysis 

show that the on-study relapse rate was higher for younger female participants, for relapse-

remitting participants versus secondary progressive participants, and for participants with 

positive enhancement status at entry using Wilcoxon test, p < .05 (Held et al., 2005). A higher 

relapse rate was also associated with a shorter disease duration, lower entry EDSS, more pre-

study relapses, and more enhancing lesions in T1 (Held et al., 2005). A Poisson regression model 

was also fitted using five predictors to predict the on-study relapse rate (Held et al., 2005). The 

fitted Poisson model results showed that disease duration (estimate = -0.02) and previous relapse 

number were significant (p < .05) predictors (estimate = 0.59 for one, 0.91 for two, and 1.45 for 

three or more relapses vs no relapses; Held et al., 2005). While the Poisson regression is a solid 

traditional model for a continuous outcome, other sophisticated predictive modeling approaches 

could have been evaluated. In addition, only including 10 features in the model can be limiting in 

increasing accuracy and optimization. 
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Research has also been done on predicting RRMS utilizing discrete distribution models to 

characterize relapsing-remitting contrast-enhancing lesions (CEL) to quantify the interpatient 

variability (Velez de Mendizabal et al., 2013). Mendizabal et al.’s (2013) study analyzed nine 

MS participants over 48 months that had a monthly MRI. Sixteen structural models that included 

seven different probability distributions were evaluated with a maximum of six predictors (Velez 

de Mendizabal et al., 2013). Results showed that based on the number of model parameters and 

the precision of the parameters the best fitting model was the negative binomial compared to the 

other models such as Poisson model, Poisson model with mixed distribution, Zero-Inflated and 

Generalized Poisson models and the Zero-Inflated Negative Binomial model (Velez de 

Mendizabal et al., 2013). The minimum value of the objective function, which is approximate to 

-2 × log (likelihood) [-2LL], was criteria used as model comparison during model development 

(Velez de Mendizabal et al., 2013). The Akaike information criteria (AIC) was also used as 

measurement in the final model. In addition, the final model was based on the precision of 

parameter estimates and the results from model predictive performance from model simulations 

were compared (Velez de Mendizabal et al., 2013). While Velez de Mendizabal and colleagues’ 

model compared 16 different structural models, the sample size was extremely small (n = 9) and 

results may not be generalizable to the MS population. Measurement on evaluating the best 

performing model used was a strength of the study, however, traditional statistical models were 

used and machine algorithms were excluded, which leaves a gap in the model evaluation of the 

study. 

There is also some evidence on implementing a score to identify individual PwMS with 

RRMS via a multivariate Cox analysis, where the first relapse was the independent variable to 

try and predict future relapses in the short term (Sormani, Rovaris, Comi, & Filippi, 2007). 
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Sormani et al.’s (2007) study included 539 PwMS from the placebo group of a clinical trial. The 

univariate Cox analysis that produced variables with a p value less than .20 were used in the 

multivariate Cox analysis and time to first relapse was the dependent variable (Sormani et al., 

2007). Variables that had a p value of .01 were retained in the final model. The final model 

produced a linear predictive score that was calculated using the variables included in the model 

and their estimated coefficients (Sormani et al., 2007). Creating a linear predictive score using a 

multivariate Cox analysis is a traditional statistical method. The study lacks comparison to other 

traditional and machine learning algorithms to evaluate fit and performance. In addition, the final 

model has only two independent predictors of relapse, the number of enhancing lesions on a 

baseline MRI and the number of relapses during the previous two years (Sormani et al., 2007). 

The number of features included in the final model may need to be expanded to generate a more 

accurate predictive model.  

There is a lack of research on predicting MS hospital utilization, specifically MS all-

cause UC. A recent study forecasted MS hospitalization in the U.S. from 2017-2040, and utilized 

an Autoregressive Integrated Moving Average (ARIMA; Sharma, Bittner, & Cho, 2019). Results 

showed hospital admissions were predicted to increase by 32% in 2030 (Sharma et al., 2019). 

However, this study does not compare with other sophisticated predictive models, and does not 

predict all-cause UC utilization. In 2005, a cross-sectional study of 4,000 MS participants was 

done to estimate current costs and quality of life of participants treated with disease-modifying 

drugs (DMDs) in the U.S, and an overall assessment of MS cost (Kobelt, Berg, Atherly, & 

Hadjimichael, 2006). Results showed that 28.8% of participants had a relapse during the past 

three months and total average costs were estimated at $47,215 per patient per year (Kobelt et 

al., 2006). Iezzoni and Ngo (2007) completed a study and interviewed 983 MS working-age 
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individuals. Results of the study showed significant impact on cost of MS care and disability 

impact. Of those interviewed, 27.4% indicated that, their health insurance concerns had 

significantly affected employment decisions since being diagnosed with MS (Iezzoni & Ngo, 

2007). Furthermore, 27.4% put off or postponed seeking needed health care because of costs, 

16.4% reported difficulty paying for health care, and 22.3% delayed filling prescriptions, skipped 

medication doses, or split pills because of costs (Iezzoni & Ngo, 2007). In addition, 26.6% 

reported significant concerns about affording food, utilities, and housing (Iezzoni & Ngo, 2007). 

Overall, there has been limited research on predicting MS relapses and predicting MS all-

cause UC utilization to date. These studies used traditional statistical methods with no emphasis 

on fit or performance of the model. In addition, all of the statistical methods used were 

traditional in nature and did not use modern predictive analytics techniques such as random 

forest, ridge or LASSO regression which will likely perform better and provide more robust and 

accurate results.  

Statistical modeling comparisons. The main purpose of this research study is to 

compare statistical model classes between traditional methods and more sophisticated predictive 

analytics. There is some research suggesting what are the “best” model comparison approaches 

and how do they compare. Couronné, Probst, and Boulesteix (2018) conducted a model 

comparison paper between random forest and logistic regression. This was a large-scale 

benchmarking experiment based on 243 datasets comparing the prediction performance of 

random forest with logistic regression (Couronné et al., 2018). This model comparison used AIC, 

area under the curve (AUC), and Brier score and showed the delta between logistic regression 

and random forest. Results of the study showed that random forest performed more favorably 

over logistic regression in 67 of the datasets analyzed (Couronné et al., 2018). Mean differences 



STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 26 

between logistic regression and random forest was .03 for accuracy, -.03 for Brier score, and .04 

for AUC. Couronné et al.’s (2018) comparison study was utilized as a framework for this 

proposed study.  

Zhang, Lu, and Hou (2019) conducted research on a model comparison between random 

forest and logistic regression in predicting diabetes. The study calculated AUC, sensitivity and 

accuracy for model comparison. Results showed that the accuracy of random forest was slightly 

higher than logistic regression (0.87 versus 0.86; Zhang et al., 2019). The AUC was similar 

between random forest and logistic regression and random forest (0.94 vs. 0.93; Zhang et al., 

2019). This study is limited as the researchers only compared a few different classification 

measures and excluded measures such as precision, F1 Score, and Matthew’s correlation 

coefficient (MCC) which this study has built upon (Zhang et al., 2019). 

Matthew’s correlation coefficient was originally developed in 1975 for comparison of 

chemical structures (Matthews, 1975). The MCC is similar to computing any correlation 

coefficient, but for two binary variables, true class and predicted class (Baldi, Brunak, Chauvin, 

Andersen, & Nielsen, 2000). The MCC is always between -1 and +1, a value of -1 denotes total 

disagreement and +1 total agreement (Baldi et al., 2000). Baldi et al. (2000), re-proposed 

Matthew’s correlation coefficient as the standard performance metric for machine learning. 

Chicco and Jurman’s (2020) study utilized six synthetic use cases in different genomics scenario, 

and showed MCC produced a more informative and accurate score in assessing binary 

classification models, than accuracy and F1 score. The F1 score is defined as the harmonic mean 

of precision and recall (Chicco & Jurman, 2020). The study suggests that the MCC should be 

preferred to F1 and accuracy when evaluating binary classification tasks by scientific 

communities (Chicco & Jurman, 2020). When a dataset is unbalanced, accuracy is not a good 
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measurement because it produces an over optimistic estimation of the classifier ability on the 

majority class, but MCC performs better in this situation (Chicco & Jurman, 2020). Thus, the 

MCC is a reliable statistical measure and produces a high score only if the prediction obtained 

good results in all of the four confusion matrix categories (Chicco & Jurman, 2020). The 

confusion matrix is a critical tool used to determine the model’s accuracy, is part of the model’s 

results, and contains four metrics (true positives, false negatives, true negatives, and false 

positives). 

There is a tradeoff between prediction accuracy and model interpretability when 

comparing parametric and nonparametric models in statistical learning methods. More restrictive 

models are generally more interpretable but sometimes less accurate in prediction (e.g., linear or 

logistic regression; James et al., 2013). If inference is the goal, then more restrictive models such 

as linear regression are usually preferred. Non-parametric methods such as decision trees and 

support vector machines are usually less flexible models and are less interpretable, but 

sometimes more accurate (James et al., 2013). With regards to this study, logistic, LASSO, and 

ridge are parametric methods and random forest is nonparametric. Figure 2 shows the flexibility 

of a method increases as the interpretability decreases (James et al., 2013). In addition, machine 

learning algorithms have the ability to include many features and perform optimally, where 

logistic regression may take more time to engineer and optimize the model.  

Current research on relapse and all-cause UC does not enable broad and modern use of 

predictive modeling techniques. In addition, there is no research comparing fit and performance 

between predictive analytics and statistical methods. These limitations present challenges for 

cost-effectiveness analyses and the overall assessment of the quality and cost of MS healthcare 

services delivery. These studies have made the advancement of analysis of MS at the population 
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level. However, they have not conducted systems-level analysis nor investigated predictive 

analytics techniques concerning MS relapse or all-cause UC.  

There are healthcare quality outcomes and cost implications for this work beyond the 

methodological comparisons of statistical models in theoretical research. Predictive analytics 

methods have the potential to empower and accelerate the capability of LHS to predict and 

respond to emerging health needs of people with costly, complex, chronic “3C” conditions like 

MS and better inform continuous improvement efforts. This could potentially result in achieving 

more efficient and effective healthcare outcomes and saving time and overall cost. 
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Chapter 2 

Method 

Parent Study Design 

The parent research study, MS-CQI (Appendix A), utilizes a prospective step-wedge 

randomized design. Compared to a standard randomized clinical trial or cluster-randomized 

design, the step-wedge design can allow for additional comparisons within each MS center in a 

pre-clinical and post-clinical quality intervention (Rapkin et al., 2012). Randomized clinical 

trials are the gold standard in research design for inferring a causal relationship (Cartwright, 

2010).  

MS-CQI is a two-part, 3-year clinical quality improvement prospective study that started 

in June 2017 and concluded in June 2020. There are two levels of participation in this study: (a) 

system-level administrative; and (b) individual-level clinical Patient Reported Outcomes (PROs). 

In MS-CQI, the term “system level” refers to the MS clinical sites and “population level” refers 

to the whole MS collaborative which consists of all four clinical sites aggregated together. 

Individual level data are available within each MS clinical center. These data created a combined 

MS clinical quality intervention (MS-CQI) database.  

Benchmarking and analysis of data from each center has been conducted via the MS-CQI 

database quarterly throughout the three-year study. Baseline data were collected during the first 

year of the study. In the second part of the study, years two and three, investigations were 

conducted on the effect of a clinical quality intervention on primary endpoints and selected 

secondary measures at the system and individual level outcomes. Protected health information 

(PHI) was collected for the individual level PRO portion of the study; therefore, written 

informed consent was obtained for participation in this part of the study. (Oliver et al., 2019).  
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Proposed Study Design 

This study was built on the standard MS-CQI protocol which has established the MSCQI 

systems-level database and utilized data from the parent study for secondary analyses. An 

analytic comparison study was proposed based on the third year of data, June 2019-June 2020. 

The MS-CQI team has studied system-level variation in relapses and all-cause UC for individual 

sites, between sites, and for MS-CQI collectively as part of the parent study. The proposed study 

predicted relapse and all-cause UC and compares these outcomes through various types of 

statistical models. Data collected across four clinical MS centers include administrative data and 

eight clinical electronic health record (EHR) clinical outcome measures. These outcome 

measures are described in the subsequent section. The MS-CQI study is using traditional 

methods of analysis, and this study builds upon that by studying newer approaches and 

comparing these with the standard approaches. Logistic regression and maximum likelihood 

estimation methods were used for standard inferential analyses. Ridge, LASSO, and random 

forest was used for predictive analytics.  

Participants 

This study used EHR data extracted at the individual level and ‘rolled up’ to the system 

and population level. Inclusion criteria included participants age 18 years or older, with MS 

presenting to any of the four centers, who entered the study in any quarter (7/1/2017-6/30/2020). 

Exclusion criteria included cases with missing or incorrectly input data and those who refused to 

participate in the study. For the purpose of this study, data collected in year 3 was utilized. 

Additional methods for participants are available in the parent study (See Appendix A).  
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Setting  

Methods for setting are described by the parent study protocol for MS-CQI (see 

Appendix A).  

Data Management 

Data were extracted in a de-identified form via data downloads from electronic medical 

records (EMRs) and administrative records from participating centers. Each MS-CQI clinical 

center enters individual level data, and the data was managed using REDcap (Research 

Electronic Data Capture) electronic data capture tools hosted at Dartmouth. REDCap is a secure, 

web-based software platform designed to support data capture for research studies, providing (a) 

an intuitive interface for validated data capture; (b) audit trails for tracking data manipulation and 

export procedures; (c) automated export procedures for seamless data downloads to common 

statistical packages; and (d) procedures for data integration and interoperability with external 

sources (Harris et al., 2019; Harris et al., 2009). No PHI was entered into this database. All PHI 

remained at specific clinical center locations. All data were initially managed in the REDcap 

database, and subsequently extracted into SAS 9.4 for data management, and R for statistical 

analysis. Additional methods for data management were established by the MS-CQI parent study 

(See Appendix A).  

Procedures 

Recruitment. Methods for recruitment were established by the MS-CQI parent study 

(See Appendix A).  

Informed consent. The institutional review board (IRB) at Dartmouth (Committee for 

Protection of Human Subjects at Dartmouth College) approved the parent MS-CQI study, and a 

reliance agreement between Dartmouth and the Human Research Protection Program at the 
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University of Indianapolis was put into place before data analysis was conducted. Additional 

methods for informed consent were established by the MS-CQI parent study (See Appendix A).  

Continuous Quality Improvement Intervention 

The clinical quality improvement intervention employed in the parent study is an IHI 

Breakthrough Series CQI intervention, including an improvement collaborative and professional 

improvement coaching (Oliver et al., 2019). Methods for CQI intervention were established by 

the MS-CQI parent study (See Appendix A).  

Data and Data Collection for Relapses and All-Cause Hospitalization 

Each of the four MS-CQI clinical centers abstracted participant data from their own 

EHRs. The data were deidentified and then input into REDcap. The following is an estimated 

sample size for unique participants by center for EHR year 3: Center A: n = 977; Center B: n = 

460; Center C: n = 539; Center D: n = 556. Total sample size for year 3 is 2,532. For this study, 

data was extracted from REDcap. Data management for this study used SAS/STAT® software, 

Version 9.4 (Copyright ©2019; SAS Institute Inc., Cary, NC). Analysis for this study was 

conducted in R (R Core Team, 2014). The following variables were extracted and included in the 

predictive models. 

• Patient level predictors include:  

• Age is a continuous variable measured in years 

• Sex is a categorical dichotomous variable (male = 0, female =1) 

• MS Center is an ordered categorical variable (1, 2, 3, 4) 

• MS phenotype is an ordered categorical variable (RRMS, SPMS, PPMS, PRMS, 

other). 

• Clinical level predictors include:  
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• Participants on at least one DMT is a dichotomous variable (0 = no, 1 = yes) 

• Participants with at least one brain MRI is a dichotomous variable (0 = no, 1 = 

yes)  

• Participants with at least one thoracic MRI is a dichotomous variable (0 = no, 1 = 

yes)  

• Participants with at least one cervical MRI is a dichotomous variable (0 = no, 1 = 

yes)  

• Participants with at least one MS relapse is a dichotomous variable (0 = no, 1 = 

yes)  

• Participants with at least one hospitalization is a dichotomous variable (0 = no, 1 

= yes)  

• Participants with at least one ED visit is a dichotomous variable (0 = no, 1 = yes)  

• Participants with at least one UC visit is a dichotomous variable (0 = no, 1 = yes)  

Exploratory Data Analysis  

Descriptive statistics include frequency distributions for categorical variables and means 

with standard deviations for normally distributed continuous variables. The output of the 

descriptive statistics was reported in tabular form for each center and overall. Appropriate power 

tests were conducted to ensure at least a .80 level, and demographic data were analyzed for 

differences across centers. Mean differences were tested via one-way ANOVA (analysis of 

variance) for continuous variables and chi-square for categorical variables with a significance 

level of α = .05. Bivariate analysis was conducted to determine associations between pairs of 

variables and which variables should be included in the predictive models (p < .10). If there were 

missing data, an average imputation was computed, and the data were included in the analysis. 
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Boxplots were utilized to assess outliers in continuous data and frequency tables for categorical 

data. If extreme observations were detected, the analysis continued to better understand if the 

outliers impacted the analysis results. If the results were affected by the outliers, those 

observations were removed from the dataset. 

Predictive Models  

Logistic regression was utilized as the traditional model because it is often used for 

classification predictive models in healthcare. Its popularity in health sciences is due to the 

ability of logistic regression to give a discrete dichotomous outcome (e.g., disease or no disease; 

Tabachnick, Fidell, & Ullman, 2019). In the proposed study, logistic regression was compared 

with other machine learning models, specifically ridge, LASSO, and random forest. The area 

under the curve of these models was compared to assess which model had the best goodness of 

fit to suggest which approach is best at predicting MS relapse and MS all cause-UC utilization. 

In addition, accuracy, true positive rate (TPR), false-positive rate (FPR), negative predictive 

value (NPV), precision (PPV), F1 measure, and MCC was compared across models. Each model 

was separately estimated for each outcome, and model results were tabled and compared.  

Logistic regression. Logistic regression modeling allows a discrete outcome variable 

(dependent variable) to be modeled as a function of other variables that can be discrete, 

continuous, dichotomous, or a mix (Tabachnick et al., 2019). Logistic regression analysis is also 

used when the distribution of responses on the dependent variable is likely to be nonlinear 

(Tabachnick et al., 2019). The logistic regression is a nonlinear model and the equations utilized 

to describe the outcomes are more complex than those for multiple regression (Tabachnick et al., 

2019). However, this nonlinear function is based on the best linear combination of predictors 

(Tabachnick et al., 2019). This linear equation uses the logit function as our link function and is 
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the natural (loge) of the probability of being in one group divided by the probability of being in 

the other group (Tabachnick et al., 2019). The technique for estimating coefficients in logistic 

regression is maximum likelihood. The purpose of this procedure is to find the best linear 

combination of predictors to maximize the likelihood of obtaining the observed outcome 

frequencies (Tabachnick et al., 2019). Since the logit function is utilized, the output is the log-

odds; thus, we call this model logistic regression. The range of log-odds is from −∞ to ∞. In this 

study the logistic model was optimized initially through the bivariate analysis in exploratory data 

analysis (EDA). In the modeling process the variables that were selected through the EDA were 

run through backward elimination at the statistical significance of p < .05. This process 

engineered and optimized the logistic regression to compete equitably with the machine learning 

algorithms. 

Ridge regression and LASSO. Ridge regression and LASSO are both shrinkage 

methods and can be used with many features in the model without overfitting (Hastie, Tibshirani, 

& Friedman, 2009; James et al., 2013). Both of these models shrink or regularize the coefficient 

estimates (“shrinks” them) towards zero (Hastie et al., 2009; James et al., 2013). By shrinking 

coefficient estimates, this improves the fit of the model by reducing the model’s overall variance 

(Hastie et al., 2009; James et al., 2013). Ridge and LASSO work by adding a penalty term to the 

log-likelihood function.  

For ridge regression, the penalty term is 𝛽𝛽𝑗𝑗2, and for LASSO, it is |βj|. (Hastie et al., 2009; 

James et al., 2013). The penalty term is a shrinkage penalty, and when the beta estimates are 

small it has the effect of shrinking the parameters close to zero (James et al., 2013). The tuning 

parameter controls the relative impact of the shrinkage penalty on the coefficient estimates. 

When the tuning parameter, λ, is positive, the coefficient estimates of large values of β are 
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shrunk towards zero. When λ = 0, the penalty term has no effect, and the ridge regression will 

produce least squares estimates (Hastie et al., 2009; James et al., 2013). The value of λ is critical 

and can be chosen via cross-validation (James et al., 2013). Cross-validation to be discussed 

subsequently. 

Ridge will never force any variables to zero, so every variable is retained in the final 

model, which affects the interpretability of the model (Hastie et al., 2009; James et al., 2013). 

The penalty term makes the ridge regression model have decreased variance but increased bias 

(Hastie et al., 2009; James et al., 2013). In this circumstance, bias refers to how far off our 

predicted value is compared to the actual value. Variation is the spread or variation in the 

predicted values. The key in machine learning is to find a balance between bias and variation. 

For example, in machine learning the model is often complex, as complexity increases, variance 

increases and bias decreases. Finding the perfect balance between bias and variance increases the 

accuracy and generalizability of the model. Figure 3 shows the ridge regression coefficient 

estimates for each value of λ. As λ increases, the coefficient estimates approach zero (the 

horizontal line) and reduces the complexity of the model (James et al., 2013). 

LASSO works similarly to ridge but has an alternative penalty term of |βj|. The LASSO 

penalty term will set some variables to zero that are not important to the outcome; this occurs 

when the tuning parameter, λ, is sufficiently large and therefore performs variable selection 

(James et al., 2013). When λ = 0, the resulting model is an ordinary least squares (OLS) model. 

When λ is very large, the resulting model is the null model (intercept-only model) as all variables 

are forced to 0 (James et al., 2013). LASSO will produce a model that is easy to interpret due to 

variable selection and with high predictive power (Hastie et al., 2009; James et al., 2013). Ridge 
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regression and LASSO are similar in that as the tuning parameter λ increases, so does bias, but 

variance decreases (Hastie et al., 2009; James et al., 2013). 

Random forest. Decision trees are used frequently because they are similar to the way 

human beings make decisions and thus are easier to explain and visualize (James et al., 2013). 

However, their predictive accuracy may not be as strong as other machine learning predictive 

models (James et al., 2013). Random forest is a decision tree-based algorithm that does not have 

overfitting issues as most decision-tree algorithms do, and increased predictive accuracy (Hastie 

et al., 2009; James et al., 2013). This is because random forest is different from other decision 

trees; it decorrelates the trees (Hastie et al., 2009; James et al., 2013). The decorrelation process 

is also called bagging, which generates new training data sets from an original data via random 

sampling with replacement, also known as bootstrapping. This tree model uses various sets of 

training data, but each time there is a split in the tree a random sample of predictors are chosen 

from the full set of predictors (Hastie et al., 2009; James et al., 2013). Each individual 

bootstrapped data set is then used to construct a tree within the forest. This methodology reduces 

overfitting the model and is far less likely than other decision tree models to have a small set of 

strong predictors in all the tree splits (Hastie et al., 2009; James et al., 2013). 

Cross-validation. Resampling methods are an invaluable tool in the era of modern 

statistics (James et al., 2013). Resampling involves drawing samples repeatedly from the training 

set and refitting the model on each of the given samples to learn additional information on the 

fitted model (James et al., 2013). This approach allows us to learn new information about the 

model by fitting it multiple times and comparing different sample results as opposed to just 

fitting it once in the training sample (James et al., 2013). Data for the MS-CQI study are highly 

unbalanced-- particularly the relapse outcome. The low prevalence causes an imbalanced dataset 
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as there are far many more non-events (no relapse) than events (relapse). During cross-

validation, a synthetic minority over-sampling technique (SMOTE) algorithm was used to help 

with the imbalanced nature of the data. This algorithm is well known and is used to synthetically 

generate new examples of the minority class via nearest neighbors and the majority class, in this 

case (no-relapses) are also under-sampled, for a more balanced dataset. (Chawla, Bowyer, Hall, 

& Kegelmeyer, 2002). Ridge, LASSO, and random forest methods generate a variable 

importance plot, which is scored from 0 to 100 and gives a value based on the statistical 

significance and effect on the model 

Cross-validation is a type of resampling method that is used to estimate the test error of 

the statistical method, which gives information on model performance or flexibility (James et al., 

2013). Cross-validation can be a useful approach in classification models where the outcome Y 

is qualitative (James et al., 2013). In this situation, the cross-validation uses the number of 

misclassified observations (James et al., 2013). For this study k-fold cross-validation was used as 

the resampling method, where k = 10. The k-fold approach randomly divides the observations in 

the data set into folds or k groups of equal size (Hastie et al., 2009; James et al., 2013). The 

initial fold is the validation set and then the method is fit on the remaining k-1 folds (Hastie et 

al., 2009; James et al., 2013). This process is then repeated k times with a different set of data 

and each time is treated as a validation set (James et al., 2013). The standard approach for 

classification problems in data science is 10-fold cross-validation. 

For this study, the best model from each cross-validation training of 10 models is selected 

as the champion (optimized) model. During cross-validation each model was separately 

optimized for internal tuning using accuracy, MCC, and F1. For the endpoint of relapse, logistic 

regression, LASSO, ridge and random forest were each cross-validated ten times by three 
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different optimizations for a total of 12 champion models that came from a total of 120 models. 

For the endpoint of all-cause UC logistic regression, LASSO, ridge and random forest each was 

cross-validated ten times by two different optimizations (accuracy and MCC) for a total of eight 

champion models that came from a total of 80 models. The additional optimization method of F1 

was not needed for all-cause UC as the dataset was already sufficiently balanced and produced 

similar results for accuracy and MCC. 

 Model comparison. The AUC, accuracy, TPR, FPR, precision, NPV, F1 score, and 

MCC was computed for all models. In statistical tests with binary outcomes, the accuracy is 

evaluated by sensitivity and specificity. Sensitivity also known as “recall” is defined as true 

positives, and specificity is defined as true negatives. Plotting the sensitivity versus 1- specificity 

generates the receiver operating characteristic (ROC) curve (Hajian-Tilaki, 2013). The AUC is 

an effective measure of this accuracy in predictive models (Hajian-Tilaki, 2013). Generally, the 

AUC range is between .50 and 1.0, and is also known as the “c-statistic.” An AUC of .50 

indicates a prediction by chance, and AUC of 1.0 indicates a perfect prediction (Tabachnick et 

al., 2019). Accuracy is an overall average of how well the model predicts as well as its 

computational simplicity. In data science positive predictive value (PPV) and precision have the 

same mathematical definition, however the actual nomenclature is different. Precision or PPV is 

defined as true positives divided by true positives plus false positives. The precision or PPV 

defines the probability of having the disease or state in an individual with positive result 

(Šimundić, 2009). The F1 score is defined as the harmonic mean of precision and recall (Chicco 

& Jurman, 2020). The MMC is not affected by the unbalanced datasets, and is a contingency 

matrix method of calculating the Pearson product- moment correlation coefficient between actual 

and predicted values (Chicco, & Jurman, 2020).  
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Model metrics in Table 1 and Table 2 were calculated for all models in this study and 

ridge, LASSO, and random forest were compared to logistic regression. Building upon the 

framework established by Couronné and colleagues (2018), the delta between AUC, MCC, and 

F1 Score were added and compared for each model pair. This combination of measures was 

chosen based on model comparison studies in the literature, as well as MCC being the “new” 

measure to evaluate machine learning model’s performance and fit (Chicco & Jurman, 2020; 

Couronné et al., 2018; Zhang et al., 2019). Historically, F1 score and AUC were standards in 

comparing model performance and fit. 

Indices were created and differences were calculated as follows:  

• ΔperfA=perfRF −perfLR  

• ΔperfA1=perfLASSO−perfLR 

• ΔperfA2=perfRR−perfLR 

• ΔperfM=perfRF−perfLR 

• ΔperfM1=perfLASSO−perfLR 

• ΔperfM2=perfRR−perfLR 

• ΔperfF=perfRF−perfLR 

• ΔperfF1=perfLASSO−perfLR 

• ΔperfF2=perfRR−perfLR 

Before beginning the analysis and to evaluate internal validity, a training and test data set 

were split into 70% and 30% test for validation. All models in this study followed the same 

validation method. Unless noted, the threshold for statistical significance is p < .05. All models 

have the same dataset, predictors, and outcomes, and all models were trained and fit on the entire 

data set of the backwards logistic regression model for consistency. Several data visualizations 
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were implemented as part of this study, including ROC and gain curves. Gain curves were used 

to visually evaluate model performance in a binary predictive model. The visualization presents 

the percentage of captured positive responses as a function of a selected percentage of the 

sample.  

The following R packages were used in this study:  

• tidyverse: package for data import 

• caret: package for modeling and machine learning 

• yardstick: package used to quantify model fit and performance 

• glmnet: package for generalized linear models 

• broom: package for data manipulation and analysis 

• dplyr: package for data transformation and manipulation 

• ggplot2: package for data visualization 
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Chapter 3 

Results 

Center and Participant Characteristics 

Characteristics of participating MS-CQI centers are given in Table 1 for Year 3 of the 

study. The four participating centers (1-4), represent varying contexts ranging from urban 

academic MS centers to a private practice setting. Only two participants were dropped due to 

missing data. A total of 2,532 unique PwMS were followed by MS-CQI in the third year of the 

study, and volume varied substantively across centers from a low of 460 in center 2 to a high of 

977 in center 1. Overall, the general demographic characteristics of the study population align 

with those established in general MS populations, including a majority of female gender (76%), 

and relapsing MS subtype (81%). Mean age was 50 years (see Figure 4). A number of important 

characteristics varied significantly (p < .001) across centers, including MS diagnosis type, age, 

and gender.  

Clinical Outcomes and Center Level Variation 

Chi-square tests identified numerous differences in center level performance outcomes 

(Table 2). Approximately 73% of participants were on disease modifying therapy (DMT), and 

center-specific performance ranged from 60% to 95% (p < .001). Overall brain (head) MRI 

utilization was 48% with variation observed in center level performance (37-56%, p = .051). 

Overall cervical (upper neck) and thoracic (middle back) MRI utilization was much lower (27% 

and 15%, respectively), with significant center level variation again observed in the cervical 

range: 18-35%, (p < .001); thoracic range: 4-23%, (p < .001). Approximately 4% of participants 

experienced an MS relapse and center-specific performance ranged from 2.6% to 6.5% (p < 

.001). The ANOVA procedure was used to identify significant differences on annualized rates 
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for ED and UC Utilization, relapse rate, and age across centers. All the measures varied 

significantly (p < .001; see Table 2).  

The proportion of PwMS with at least one episode of acute care utilization (UC, ED, and 

hospitalizations) were relatively low: UC = 2.7%, ED = 8.2%, and hospitalization = 7.0%. 

Significant center level variation in performance was observed here as well. The proportions of 

PwMS with at least one hospitalization ranged from a high of 10.7% to a low of 4.3% (p < .001), 

proportions of PwMS with at least one ED visit ranged from a high of 11.1% to a low of 5.8% (p 

< .001), and proportions of PwMS with at least one UC visit ranged from a high of 5.2% to a low 

of 0.2% (p < .001). Utilization in these categories was also calculated in terms of utilization 

rates, and demonstrated statistically significant variation (p < .001) across centers (see Table 2).  

A Spearman correlation showed .98 - .99 positive correlation between clinical level 

dichotomous variables of ED, UC, hospitalization and relapse and the associated continuous 

level utilization variables. Therefore, the continuous level utilization variables were removed 

from any further modeling and analysis.  

Training and Testing Datasets 

The main dataset was spilt into a 70% training dataset that included 1,773 participants 

and a test dataset that included 30% of the cohort or 759 participants. Detailed information on 

the training and testing cohorts are included in Table 3. Bivariate analysis for determining 

predictors included in the predictive models is available in Table 4. 

Quantitative Aim 1: Relapse Predictive Model Comparison 

The first aim of the study was to compare logistic regression to LASSO, ridge and 

random forest in predicting MS relapse. Relapse has very low prevalence. There was a total of 97 

relapses in the dataset. The training data set had 74 relapses or 4.2% and the test dataset had 23 
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or 3.1% relapses. The low prevalence of relapse causes an imbalanced dataset, as there are far 

many more non-events than events. An initial backwards logistic regression was fit on the full 

dataset to set up the training and fit for consistency on all models. Based on the bivariate analysis 

and full dataset results the following features were included in all relapse models: age, gender, 

MS center, MS phenotype, DMT, ED visit, UC visit, brain MRI, cervical MRI, and thoracic 

MRI. Relapse was set as the target variable (outcome). There were 120 models run via cross-

validation for three different optimizations (accuracy, MCC, F1) and four different models 

(logistic, LASSO, ridge, random forest) within each paradigm. Twelve champion models were 

selected for the endpoint (relapse).  

Logistic regression (accuracy). A logistic regression using backward elimination was 

conducted controlling for confounding effects of age, gender and center. Center, MS phenotype, 

ED visit, brain MRI, thoracic MRI were significant at the p < .05 level. UC visit was not 

significant at p = .07. The confusion matrix predicted 582 true negatives, 18 false positives, 148 

false negatives and 11 true positives. Some key measures of the model were accuracy = 0.78, 

AUC = 0.63, TPR = 0.38, FPR = 0.80, MCC = 0.08 and F Score was 0.12. Additional model 

performance measures are in Table 6. 

LASSO (accuracy). A LASSO was conducted controlling for confounding effects of 

age, gender and center. The model produced an intercept only model due to shrinking the rest of 

the parameter estimates to zero. The confusion matrix predicted 730 true negatives, 29 false 

positives, 0 false negatives and 0 true positives. The model predicted no relapses on all 

observations, which is why certain performance measures such as MCC and F1 score could not 

be calculated. Some key measures of the model were accuracy = 0.96, AUC = 0.50, TPR = 0, 

and FPR = 1. Additional model performance measures are in Table 7. 
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Ridge (accuracy). A ridge regression was conducted controlling for confounding effects 

of age, gender and center. The model’s variable importance was as follows: thoracic MRI 

(100.0), brain MRI (84.0), center 4 (82.9), UC visit (69.5), RRMS (60.5), SPMS (59.8), DMT 

(57.6), cervical MRI (54.5), ED visit (52.7), center 2 (50.5), center 3 (38.6), other phenotype 

(20.8), gender (4.5), Age (0.77) and PRMS (0). The confusion matrix predicted 730 true 

negatives, 29 false positives, 0 false negatives and 0 true positives. The model predicted no 

relapses on all observations, which is why certain performance measures such as MCC and F1 

score could not be calculated. Some key measures of the model were: accuracy = 0.96, AUC = 

0.67, TPR = 0, and FPR = 1. Additional model performance measures are in Table 8. 

Random forest (accuracy). A random forest was conducted controlling for confounding 

effects of age, gender and center. The model’s variable importance was as follows: thoracic MRI 

(100), center 4 (83.0), brain MRI (69.0), DMT (40.1), cervical MRI (39.5), ED visit, (35.2), 

gender (35.0), center 2 (34.7), center 3 (27.9), RRMS (26.9), Age (18.5 years), other phenotype 

(14.4), SPMS (13.3), UC visit (3.3) and PRMS (0). The confusion matrix predicted 677 true 

negatives, 20 false positives, 53 false negatives and 9 true positives. The model predicted no 

relapses on all observations. Some key measures of the model were: accuracy = 0.90, AUC = 

0.69, TPR = 0.31, FPR = 0.93, MCC = 0.17 and F1 Score was 0.20. Additional model 

performance measures are in Table 9. 

All relapse models (accuracy). Evaluating models for AUC, random forest performed 

the best at (0.69), ridge (0.67), logistic regression (0.63), and LASSO (0.51) (see Figure 5). 

Random forest AUC was 9.5% higher than logistic regression. LASSO and ridge models 

predicted no relapses for all observations therefore; MCC and F1 Score were not calculated. 

MCC for random forest was 0.17 versus 0.08 for logistic, a 100% difference. The F1 score was 
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0.198 for random forest versus 0.12 for logistic regression, a 69% difference. Figure 6 shows the 

gain curves across models and upon visual inspection random forest and ridge models need to 

test about 25% of the sample population to capture 50% of positive responses however logistic 

requires 35% and LASSO 50%. Additional model performance measures are in Table 22. 

LASSO (MCC). A LASSO regression was conducted controlling for confounding 

effects of age, gender and center. The model’s variable importance was as follows: thoracic MRI 

(100.0), center 4 (79.0), UC visit (61.5), RRMS (42.2), brain MRI (39.6), center 2 (36.6), gender 

(25.5), ED visit (22.1), center 3 (21.2), other phenotype (7.0), Age (0.72), cervical MRI (0), 

SPMS (0), DMT (0) and PRMS (0). The confusion matrix predicted 575 true negatives, 17 false 

positives, 155 false negatives and 12 true positives. Some key measures of the model were 

accuracy = 0.77, AUC = 0.62, TPR = 0.41, FPR = 0.79, MCC = 0.09 and F1 score was 0.12. 

Additional model performance measures are in Table 10. 

Ridge (MCC). A ridge regression was conducted controlling for confounding effects of 

age, gender, and center. The model’s variable importance was as follows: PRMS (100.0), 

thoracic MRI (98.2), UC visit (78.4), center 4 (75.4), brain MRI (67.3), center 3 (52.0), ED visit 

(49.9), SPMS (46.5), cervical MRI (45.4), center 2 (44.4), RRMS (43.50), DMT (37.2), gender 

(21.3), other phenotype (15.4), and age (0). The confusion matrix predicted 603 true negatives, 

17 false positives, 127 false negatives and 12 true positives. Some key measures of the model 

were accuracy = 0.81, AUC = 0.65, TPR = 0.41, FPR = 0.83, MCC = 0.12 and F1 Score was 

0.14. Additional model performance measures are in Table 11. 

Random forest (MCC). A random forest was conducted controlling for confounding 

effects of age, gender and center. The model’s variable importance was as follows: thoracic MRI 

(100.0), center 4 (98.0), brain MRI (67.6), ED visit, (43.8), DMT (41.1), center 2 (33.1), RRMS 
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(32.0), Age (31.5), gender (27.3), cervical MRI (26.2), center 3 (25.5), SPMS (20.5), other 

phenotype (10.7), UC visit (1.7) and PRMS (0). The confusion matrix predicted 669 true 

negatives, 19 false positives, 61 false negatives and 10 true positives. Some key measures of the 

model were accuracy = 0.90, AUC = 0.69, TPR = 0.35, FPR = 0.92, MCC = 0.17 and F1 Score 

was 0.20. Additional model performance measures are in Table 12.  

All relapse models (MCC). For the MCC optimization, logistic regression results were 

the same as accuracy. Evaluating models for AUC, random forest performed the best at (0.69), 

ridge (0.65), logistic regression (0.63), and LASSO (0.62) (See Figure 7). Random forest AUC 

was 9.5% higher than logistic regression. MCC for random forest was (0.17), ridge (0.12), 

LASSO (0.09) and (0.08) for logistic regression. The F1 score for random forest was (0.20), 

ridge (0.14), LASSO (0.12) and (0.12) for logistic regression. Random forest outperformed 

logistic regression on MCC and F1 score by 107% and 71% respectively. LASSO and ridge also 

outperformed logistic regression. Figure 8 shows the gain curves across models and upon visual 

inspection all models need to test about 30-35% of the sample population to capture 50% of 

positive responses. Additional model performance measures are in Table 22. 

LASSO (F1). A LASSO regression was conducted controlling for confounding effects of 

age, gender and center. The model’s variable importance was as follows: thoracic MRI (100) the 

rest of the features had values of 0. The confusion matrix predicted 730 true negatives, 29 false 

positives, 0 false negatives and 0 true positives. Some key measures of the model were accuracy 

= 0.96, AUC = 0.59, TPR = 0, and FPR = 1. The model predicted no relapses on all observations, 

which is why certain performance measures such as MCC and F1 score could not be calculated. 

Additional model performance measures are in Table 13. 

Ridge (F1). A ridge regression was conducted controlling for confounding effects of age,  
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gender and center. The model’s variable importance was as follows: thoracic MRI (100), center 4 

(92.6), brain MRI (68.4), UC visit (67.6), DMT (58.2), center 2 (54.5), cervical MRI (51.1), 

center 3 (47.8), RRMS (45.3), SPMS (40.5), ED visit (23.6), gender (13.2), other phenotype 

(4.6), Age (1.2) and PRMS (0.0). The confusion matrix predicted 654 true negatives, 17 false 

positives, 76 false negatives and 12 true positives. Some key measures of the model were 

accuracy = 0.88, AUC = 0.65, TPR = 0.41, FPR = 0.90, MCC = 0.19 and F1 score was 0.21. 

Additional model performance measures are in Table 14. 

Random forest (F1). A random forest was conducted controlling for confounding effects 

of age, gender and center. The model’s variable importance was as follows: center 4 (100.0), 

thoracic MRI (77.9), brain MRI (53.6), Age (42.4), ED visit, (36.6), cervical MRI (32.9), DMT 

(17.4), gender (15.3), center 2 (13.4), center 3 (7.4), SPMS (5.5), other phenotype (4.97), PRMS 

(1.19), UC visit (1.16) and RRMS (0). The confusion matrix predicted 645 true negatives, 23 

false positives, 85 false negatives and 6 true positives. Some key measures of the model were 

accuracy = 0.86, AUC = 0.67, TPR = 0.21, FPR = 0.88, MCC = 0.05 and F1 score was 0.10. 

Additional model performance measures are Table 15.  

All relapse models (F1). For the F1 optimization, logistic regression results were the 

same as accuracy. Evaluating models for AUC, random forest performed the best at (0.67), ridge 

(0.65), logistic regression (0.63), and LASSO (0.59), but not dramatically different than logistic 

regression (See Figure 9). Ridge AUC was 6.3 % higher than logistic regression. MCC for ridge 

was (0.19), logistic regression (0.08) and random forest (0.05). The F1 score for ridge was 

(0.21), logistic regression (0.12), and random forest was (0.10). Ridge outperformed logistic 

regression on MCC and F1 score by 122% and 75% respectively. Logistic regression 

outperformed random forest on MCC and F1 measure. Figure 10 shows the gain curves across 
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models and upon visual inspection all models need to test about 35-37% of the sample 

population to capture 50% of positive responses. Additional model performance measures are in 

Table 22. 

Relapse indices. The delta between AUC, MCC, and F1 scores were added and 

compared for each model pair. This combination of measures was chosen based on model 

comparison studies in the literature evaluating machine learning model’s performance and fit and 

building upon those studies (Chicco & Jurman, 2020; Couronné et al., 2018; Zhang et al., 2019).  

Comparing relapse indices across models’ random forest significant outperformed 

logistic regression and other machine learning algorithms regardless of internal cross-validation 

optimization. For ΔperfA there was a 0.02 or 27.1% difference between random forest and logistic 

regression for accuracy optimization and ΔperfM a 27.5% difference. However, for ΔperfF, which 

was the F1 optimization, logistic regression and random forest performed relatively the same 

(0.82 vs. 0.83). The ΔperfM1 and ΔperfM2 (MCC optimization) LASSO and ridge outperformed 

logistic regression (0.9%, 9.4%) respectively. The ΔperfF2 index showed that ridge outperformed 

logistic by 25.8%. The ΔperfA1, ΔperfA2, and ΔperfF1 could not be calculated due to LASSO and 

ridge models predicted no relapses on all observations, therefore, certain performance measures 

such as MCC and F1 score could not be calculated. See table 24 and figures 15 and 16 for 

comprehensive data tabulations and visualizations. 

Quantitative Aim 2: All-Cause Utilization Predictive Model Comparison 

The second aim of the study is to compare logistic regression to LASSO, ridge and 

random forest in predicting MS all-cause utilization. MS all-cause utilization included all-cause 

UC visits plus all-cause ED visits. All-cause UC has low prevalence, for year three there was a 

total of 258 all-cause UC visits or 10.2% of the total population. The training data set had 181 
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all-cause UC visits or 10.2% and the test dataset had 77 or 10.2% all-cause UC visits. The low 

prevalence causes an imbalanced dataset, as there are far many more non-events (no all-cause 

UC) than events (all-cause UC). An initial backwards logistic regression was fit on the full 

dataset to set up the training and fit for consistency on all models. Based on the bivariate analysis 

and full dataset results the following features were included in all relapse models: age, gender, 

MS center, MS phenotype, DMT, hospitalization, relapse, brain MRI, cervical MRI, thoracic 

MRI, and all-cause UC as the target variable (outcome). There were 80 models run via cross-

validation, for two different optimizations (accuracy, MCC) and 4 different models (logistic, 

LASSO, ridge, random forest) within each paradigm and eight champion models selected for the 

endpoint of all-cause UC. There are at total of 80 models and 8 champion models in this aim 

since the F1 optimization was not included as part of the modeling process. For this endpoint, the 

F1 results were similar to the other optimization techniques (accuracy, MCC).  

Logistic regression (accuracy). A logistic regression using backward elimination was 

conducted controlling for confounding effects of age, gender and center. Center, MS phenotype, 

hospitalization, and thoracic MRI were significant at the p < .05 level. Relapse visit was fairly 

significant at p = .051. The confusion matrix predicted 647 true negatives, 43 false positives, 35 

false negatives and 34 true positives. Some key measures of the model were accuracy = 0.90, 

AUC = 0.76, TPR = 0.44, FPR = 0.95, MCC = 0.41, and F score = 0.47. Additional model 

performance measures are in Table 16. 

LASSO (accuracy). A LASSO was conducted controlling for confounding effects of 

age, gender and center. The model’s variable importance was as follows: hospitalization (100) 

the rest of the features had values of 0. The confusion matrix predicted 660 true negatives, 45 

false positives, 22 false negatives and 32 true positives. Some key measures of the model were 
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accuracy = 0.91, AUC = 0.69, TPR = 0.42, FPR = 0.97, MCC = 0.45 and F score was 0.49. 

Additional model performance measures are in Table 17. 

Ridge (accuracy). A ridge regression was conducted controlling for confounding effects 

of age, gender and center. The model’s variable importance was as follows: hospitalization 

(100), PRMS (53.3), RRMS (41.2), center 2 (37.7), other phenotype (36.1), thoracic MRI (33.5), 

relapse (26.7), center 3 (22.9), SPMS (21.5), center 4 (20.2), cervical MRI (17.4), DMT (2.5), 

brain MRI (0.67), age (0.49) and gender (0). The confusion matrix predicted 662 true negatives, 

59 false positives, 20 false negatives and 18 true positives. Some key measures of the model 

were accuracy = 0.90, AUC = 0.75, TPR = 0.23, FPR = 0.97, MCC = 0.28 and F score was 0.31. 

Additional model performance measures are in Table 18. 

Random forest (accuracy). A random forest was conducted controlling for confounding 

effects of age, gender and center. The model’s variable importance was as follows: 

hospitalization (100), RRMS (46.0), center 2 (43.4), center 3 (34.0), thoracic MRI (32.6), age 

(32.1), cervical MRI (28.9), DMT (28.3), center 4 (27.4), relapse (23.7), gender (22.9), other 

phenotype (21.6), brain MRI (20.3), SPMS (18.8), and PRMS (0). The confusion matrix 

predicted 665 true negatives, 50 false positives, 17 false negatives and 27 true positives. Some 

key measures of the model were accuracy = 0.91, AUC = 0.75, TPR = 0.35, FPR = .98, MCC = 

0.42 and F1 score was 0.45. Additional model performance measures are in Table 19. 

All-UC models (accuracy). Evaluating models for AUC, logistic regression performed 

the best at (0.76), random forest (0.75), ridge (0.75), and LASSO (0.69) (See Figure 11). Logistic 

regression’s AUC was 1.3% higher than random forest, which was the best performing machine 

learning model. The MCC for LASSO was (0.45), random forest (0.42) logistic regression 

(0.41), and ridge (0.28). The F1 score for LASSO was (0.49), logistic regression (0.46), random 
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forest was (0.44), and ridge (0.31). LASSO outperformed logistic regression on MCC and F1 

score by 10% and 6.5% respectively. Figure 12 shows the gain curves across models and upon 

visual inspection all models need to test about 12.5% of the sample population to capture 50% of 

positive responses, with the exception of LASSO that requires around 22%. Additional model 

performance measures are in Table 23. 

Ridge (MCC). A ridge regression was conducted controlling for confounding effects of 

age, gender, and center. The model’s variable importance was as follows: hospitalization (100.0), 

PRMS (50.8), other phenotype (39.9), RRMS (35.0), SPMS (29.9), center 2 (28.6), relapse 

(25.7), thoracic MRI (23.6) center 4 (18.7), center 3 (15.3), cervical MRI (10.3), brain MRI (3.4), 

gender (3.3), DMT (2.5), and age (0). The confusion matrix predicted 648 true negatives, 46 

false positives, 34 false negatives and 31 true positives. Some key measures of the model were 

accuracy = 0.90, AUC = 0.76, TPR = 0.40, FPR = 0.95, MCC = 0.38 and F1 score was 0.44. 

Additional model performance measures are in Table 20. 

Random Forest (MCC). A random forest was conducted controlling for confounding 

effects of age, gender and center. The model’s variable importance was as follows: 

hospitalization (100), RRMS (51.0), center 2 (44.1), thoracic MRI (34.9), center 3 (33.8), DMT 

(30.0), cervical MRI (30.0), age (29.8), center 4 (26.5), gender (23.2), relapse (22.9), other 

phenotype (21.9), SPMS (21.7), brain MRI (21.5), and PRMS (0). The confusion matrix 

predicted 668 true negatives, 50 false positives, 14 false negatives and 27 true positives. Some 

key measures of the model were accuracy = 0.92, AUC = 0.77, TPR = 0.35, FPR = 0.98, MCC = 

0.44 and F1 score was 0.46. Additional model performance measures are in Table 21.  

All-UC models (MCC). For the MCC optimization, logistic regression and LASSO 

results were the same as accuracy. Evaluating models for AUC, all models performed similarly 
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with the exception of LASSO; random forest (0.76), ridge (0.76), logistic regression (0.76), and 

LASSO (0.69) (See Figure 13). The MCC for LASSO (0.45), random forest (0.44), logistic 

regression (0.41), and ridge (0.38). The F1 score for LASSO (0.49), logistic regression (0.47), 

random forest (0.46), and ridge (0.44). The LASSO outperformed logistic regression on MCC 

and F1 score by 10% and 4% respectively. Logistic regression outperformed ridge for MCC and 

random forest and ridge for F1 score. Figure 14 shows the gain curves across models and upon 

visual inspection all models need to test about 12.5% of the sample population to capture 50% of 

positive responses, with the exception of LASSO that requires around 22%. Additional model 

performance measures are in Table 23. 

All-UC indices. The delta between AUC, MCC, and F1 score was added and compared 

for each model pair. When comparing all-cause UC indices across models’ logistic regression 

performed similarly to random forest and LASSO regardless of internal cross-validation 

optimization. Ridge performed worse overall compared to logistic regression.  

For ΔperfA there was a -1.1% difference between random forest and logistic regression for 

accuracy optimization and ΔperfM a 1.58% difference for MCC optimization. Random forest and 

logistic performed similarly on all their indices. The ΔperfA1 index showed that LASSO and 

logistic regression performed similar (1.631 vs. 1.639), or a -0.5% difference. For ΔperfA2 ridge 

performed significantly worse over logistic regression (-17.8%). The ΔperfM2 (MCC 

optimization) ridge performed worse than logistic regression (-3.8%). See table 25 and figures 16 

and 17 for comprehensive data tabulations and visualizations. 
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Chapter 4 

Discussion and Conclusions 

MS has been studied through basic and clinical trials research and epidemiological 

studies on population outcomes and quality of life. The MS-CQI adds system-level approaches to 

study system level effects on population health outcomes using an LHS approach. This study 

expands upon MS-CQI by moving towards predictive analytics. There is various research using 

traditional statistical methods, but a lack of research on predictive analytics for MS outcomes. 

There is a dearth of research on predicting relapse in MS quality improvement collaboratives 

using predictive analytics, as well as predicting MS relapse and all-cause UC. Relapse and UC 

utilization are aspects of MS that are costly and disabling, and to date, have been largely 

unpredictable. Predictive analytics methods have the potential to make these outcomes more 

predictable than standard approaches and could help shift MS care from a reactive to a predictive 

approach.  

The main purpose of this research is comparing statistical model classes between 

traditional methods and more sophisticated predictive analytics approaches. There is some 

literature suggesting what are the “best” model comparison approaches. Zhang et al. (2019) 

conducted research on a model comparison between random forest and logistic regression in 

predicting diabetes, and calculated AUC, sensitivity and accuracy for model comparison (2019). 

Couronné et al. (2018), conducted research and used AIC, AUC, and Brier score and showed the 

delta between logistic regression and random forest. Couronné et al.’s (2018) study is limited as 

they only compared a few different classification measures and excluded measures such as F1 

Score, and Matthew’s correlation coefficient (MCC) which this study will build upon. 
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In utilizing predictive analytics for MS relapse literature showed some traditional 

statistical modeling approaches. Research has been used to determine predictors of MS relapse 

utilizing Poisson regression (Held et al., 2005), predicting RRMS utilizing discrete distribution 

models to characterize relapsing-remitting CEL (Velez de Mendizabal et al., 2013) and utilizing 

a multivariate Cox analysis, to predict future relapses in the short term (Sormani et al., 2007). 

While these statistical approaches are appropriate, other sophisticated predictive modeling 

approaches could also be evaluated. For Aim 1 of this study, the predictive modeling findings on 

MS relapse has filled an important gap in literature to compare traditional statistical models to 

predictive analytics. In addition, the methods used to evaluate the fit and performance of the 

models have been broadened by creating a more comprehensive index than what is currently in 

literature that do not include the use of MCC or F1 score (Couronné et al., 2018). 

In regards to predicting all-cause UC there is some research on predicting MS hospital 

utilization. A recent study forecasted MS hospitalization using an Autoregressive Integrated 

Moving Average (ARIMA; Sharma et al., 2019). There are cost of MS and cost-effectiveness 

studies estimating current costs and quality of life of patients treated with DMDs (Kobelt et al., 

2006). These studies are compelling; however, they do not focus on the endpoint of predicting 

all-cause UC and do not use predictive analytics and critically evaluate their performance. For 

Aim 2, this study has filled a significant gap in literature not only with its endpoint of all-cause 

UC but to compare traditional statistical models to predictive analytics. In addition, the methods 

used to evaluate the fit and performance of the models are more comprehensive. 

Reviewing these numerous models through a data science lens via cross- validation and 

picking a champion model has made the model more generalizable. Comparing different 

modeling paradigms to establish optimal predictive approaches for relapses and all-cause UC 
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could be a trailblazer for the MS community if it is powerful enough to help MS care systems 

predict, stratify, and address risk in MS populations. All-cause UC has not been researched in 

depth, various models have not been compared for performance and fit. There are no current uses 

of modern predictive analytics techniques such as random forest, ridge or LASSO regression for 

these endpoints in the MS world. This study introduces predictive analytics to the MS field. 

Quantitative Discussion Aim 1: Relapse Predictive Model Comparison  

Results substantiate that in certain circumstances machine-learning algorithms 

outperform traditional statistical models. This supports recent popularity of utilizing machine 

learning algorithm-based approaches such as random forest. Evaluating relapse indices across 

models, random forest significantly outperformed logistic regression and other machine learning 

algorithms regardless of internal cross-validation optimization. For the indices calculated in this 

study, the delta between AUC, MCC, and F1 scores were added and compared for each model 

pair to create an index. 

For ΔperfA (ΔperfA=perfRF −perfLR)there was a 0.23 or 27.1% difference between random 

forest and logistic regression for accuracy optimization. Decoupling the index, the optimal AUC 

was 0.69 by the random forest accuracy tuned model, which was 0.06 or 9.5% better than logistic 

regression (0.63). Couronné et al’s (2018) study showed a mean average difference of 0.04 

between RF and LR. This study shows an above average difference on that benchmark measure. 

MCC for random forest was 0.17 versus 0.08 for logistic, a 0.08 or 100% difference. The F1 

Score was 0.20 for random forest versus 0.12 for logistic regression, a 0.08 or 69% difference. 

Random forest outperformed logistic regression for ΔperfA. 

For ΔperfM (ΔperfM=perfRF−perfLR) there was a 0.23 or 27.5% difference between random 

forest and logistic regression. The AUC on RF was 9.5% higher LR, same as ΔperfA. In addition, 
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random forest performed better on MCC and F1 score. These are significant differences when 

looking at the overall composite index or individual measures. As discussed in the literature 

MCC is a more appropriate way to evaluate imbalanced datasets (Chicco, & Jurman, 2020). The 

MMC is not affected by the unbalanced datasets, and is a contingency matrix method of 

calculating the Pearson product- moment correlation coefficient between actual and predicted 

values (Chicco, & Jurman, 2020). Thus, the MCC is a reliable statistical measure and produces a 

high score only if the prediction obtained good results in all of the four confusion matrix 

categories (Chicco & Jurman, 2020). 

For the prediction for ΔperfM,, the true positives were a bit higher in logistic regression 

(11 vs. 9) compared to random forest. Logistic regression had almost three times the number of 

false negatives compared to random forest (148 vs. 53) as well as logistic predicting significantly 

less true negatives (582 vs. 677). The difference between predictive false positives were 

minimum between RF and LR (20 vs. 18). The number of false negatives in each model drives 

the overall performance of the logistic model and its associated utility down. Random forest 

outperformed logistic regression for ΔperfM. 

The imbalanced nature of this dataset limits overall predictive capability, however, RF 

does a significantly better job at overall prediction across most measures. The increased 

performance and fit of RF is substantial and does a much better job of predicting true negatives 

for MS relapse compared to LR. The number of false negatives that LR produces substantiates 

the use of RF over other modeling techniques when predicting MS relapse. 

One of the limitations of the dataset was the imbalance. Relapse is low prevalence and 

the amount of non-events within the data makes it difficult to make a prediction as some of the 

statistical models will predict all non-events for relapse. However, as the results have shown, 
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being able to fine tune models within data science paradigm gives the outcome more flexibility 

to be accurate. The ability to use different internal cross-validation optimization techniques and 

oversampling in the data science space allowed further agility and flexibility during the modeling 

process. In addition, having a wide array of modeling choices beyond traditional statistical 

modeling allowed greater comparison of different modeling techniques and the opportunity for 

the “best” model. While the prevalence is low, adding more data may increase the power and 

robustness of the models.  

Quantitative Discussion Aim 2: All-Cause UC Predictive Model Comparison  

Results here suggest that machine learning algorithms can perform similarly to traditional 

statistical models. Here, logistic regression significantly outperformed ridge regression. This 

finding is an opportunity to better understand the conditions when machine learning algorithms 

are not preferable to standard statistical methods. When evaluating all-cause UC indices across 

models’ logistic regression performed similarly to random forest and LASSO regardless of 

internal cross-validation optimization. 

For ΔperfA there was a -0.02 or -1.1% difference between random forest and logistic 

regression for accuracy optimization and ΔperfM a 0.03 or 1.58% difference. Decoupling the 

ΔperfM index, the optimal AUC was 0.77 by the random forest versus 0.76 for logistic regression 

a nominal difference. This does not support findings from Couronné et al. (2018) which 

demonstrated a mean average difference of 4.1% between RF and LR for AUC. This is a below 

average difference on that benchmark measure. However, MCC for random forest was 0.44 

versus 0.41 for logistic, a 0.3 or 7.3% difference. For F1 Score there was minimal difference 

between RF and LR (.458 vs. .466). For ΔperfA random forest vs logistic regression on AUC was 

similar (0.75 vs. 0.76). In addition, both models performed similar on both MCC and F1 Score. 
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These are not significant differences when looking at the overall composite index or individual 

measures. Random forest did not outperform logistic regression on any of the models on this 

particular measure as well as models optimized for accuracy. There was a negligible difference 

between the performance of random forest and logistic regression models for ΔperfA. and ΔperfM. 

For ΔperfA1 (ΔperfA1=perfLASSO−perfLR) comparing LASSO to LR there is a 0.01 (-0.5%) 

difference on the index. The LR model outperformed LASSO on AUC (0.76 vs. 0.69). However, 

lasso performed better on the MCC metric (0.45 vs. 0.41). Evaluating LR and LASSO overall via 

the index there is not much difference between the two models.  

For ΔperfA2 (ΔperfA2=perfRR−perfLR) there was a -0.29 or -17.8% difference between the 

two model indices. The AUC for ridge was 0.751 versus 0.763 for LR, which is not a significant 

difference. However, when reviewing MCC and F1 score the differences were substantial (0.28 

vs. 0.41 and 0.31 vs. 0.46) respectively. This reinforces why an index that includes multiple 

measures is so pertinent for model fit and performance. Ridge regression had more false 

positives and less true positives in the prediction (l59 vs. 42 and 18 vs. 34). Logistic regression 

significantly outperformed ridge regression for ΔperfA2. 

The all-cause UC predictive models demonstrate fairly good fit and performance in both 

random forest and logistic regression. There is not a significant difference between ML 

algorithms and traditional logistic regression, however, logistic regression does outperform ridge 

regression. There is an opportunity to better understand in which circumstances ML algorithms 

may perform better with certain datasets and outcomes such as MS relapse.  

Limitations 

This study is a secondary analysis based on a Step-Wedge RCT. Randomized clinical 

trials are the gold standard in research design for inferring a causal relationship (Polit & Beck, 
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2009). However, there are threats to external validity based on the generalizability of the results. 

External validity is the extent to which the results of an RCT can be generalized to the general 

population and in clinical practice (Rothwell, 2005). This analysis was based on year 3 of the 

study, which is a cross sectional design and is limited to finding associations, and cannot 

determine causation. The final results of the three-year study which is longitudinal, may be able 

to thoroughly investigate and confirm the findings presented in this research. 

The population observed in the parent MS-CQI study is from a sample of MS care 

centers in the eastern U.S, and therefor results may have generalizability limited to that 

geographic region. This geographic limitation impacts the generalizability because it only 

includes four MS centers located in the Eastern U.S. However, the sample also consists of 

general demographic characteristics that are representative of PwMS such as majority female and 

RRMS, which is a strength of the data.  

An additional limitation was the inclusion of a limited number of variables from the 

electronic medical records in the parent MS-CQI study. The inclusion of additional variables that 

are available within an EHR, such as diagnosis codes and lab results that may have added 

additional features to the model to increase its predictive power and overall performance. 

With both study aims, additional machine learning models could be added and compared 

such as K Nearest Neighbors, Naïve Bayes and Support Vector Machine. Additional R packages 

may be available to those with advanced data science expertise that are not utilized as part of this 

study. Additional data may be advantageous to promote a more robust model for both research 

aims.  
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Implications on Future Research 

There is an opportunity for future research regarding Aim 1 of this study. Predicting 

relapse is crucial in MS care. As O’Connell et al. (2014) notated, relapses can result in 

incomplete recovery and have a significant impact on PwMS quality of life. The ability to apply 

machine-learning methods such as random forest to predict relapse more accurately could 

improve the overall quality of life of people with MS as well as save on medical cost. Paired 

with a learning health system such as MS-CQI which is configured to utilize feed forward 

predictive analytic data to inform intelligent action, powerful predictive analytics could help 

convert MS care practice from a reactive to a predictive stance. For example, predictive analytics 

could help MS care centers identify subpopulations at elevated risk of relapse and take 

preventive action before the relapses actually occur. In MS-CQI, the majority of patients had 

RRMS; therefore, there is opportunity to conduct a subsequent independent study of this 

subpopulation to focused on optimizing relapse outcomes.  

There is not much of a cost difference in implementing predictive analytics on smaller 

scale research. Data science software such as R and Python are open source and are free. If the 

dataset is small a standard laptop can perform the data wrangling and modeling the cost should 

be nominal. For smaller scale projects this may be a cost savings as opposed to statistical 

software that has a license fee associated to use the product. Costs to deploy machine learning on 

a large scale should be compared to traditional statistical methods to determine utility, cost, and 

performance. Data scientists are in high demand, costs may be higher for a data scientist versus a 

traditional statistician. These factors should be evaluated as part of your analytics plan when 

embarking on new research. 
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All-cause UC is important in the MS community. The ability to introduce predictive 

analytics into MS could change health care delivery for MS. Although there was not a big 

difference in various predictive models, there is a dearth of research on this research aim. This 

research could improve the overall quality of life of people with MS as well as save on medical 

cost. In addition, the majority of these patients had RRMS, there is opportunity to conduct a 

subsequent independent study of this subpopulation to focus on identifying high risk 

subpopulations and using LHS-oriented improvement and population health approaches to 

reduce relapse rate. 

Conclusion  

In this study, logistic regression has been compared to random forest, ridge regression, 

and LASSO for the first time for feature selection and classification of MS relapse and MS all-

cause UC utilization in a population of people with MS followed by four MS centers 

participating in a LHS model improvement science research collaborative. This study has filled 

important gaps in literature using a MSCQI based framework. Comparing the predictability of 

relapse across various models with a predictive analytics framework can potentially change how 

we manage MS care. Imagine that people with MS could get care and support before a relapse 

happens because of predictive analytics identifying the patient as high risk, rather than react to it 

after it happens. This would potentially reduce the risk of disability progression further than 

could be possible in conventional care. 

There are healthcare quality outcomes and cost implications beyond the methodological 

comparisons of statistical models as theoretical research. Predictive analytics methods have the 

potential to empower and accelerate the capability of LHS to predict and respond to emerging 

health needs of people with costly, complex, chronic conditions like MS and better inform 
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continuous improvement efforts. Predictive analytics could make LHS cheaper, faster, better and 

could inform research and improvement in new ways and accelerate improvement science 

research to make MS care better and ultimately, outcomes better for PwMS. This would 

potentially result in achieving more efficient healthcare outcomes and saving time and overall 

cost. Sophisticated predictive modeling can make an unpredictable disease like MS more 

predictable in various outcomes such as relapses and all-cause UC. 
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Table 1  

Patient Characteristics for Year 3 by Center 

Characteristics 

Center 1 Center 2 Center 3 Center 4 Total 

Number Percent Number Percent Number Percent Number Percent Number Percent 
Participants 977 38.6 460 18.2 539 21.3 556 22.0 2,532 100 

Phenotype***           

RRMS 787 80.6 364 79.1 393 72.9 518 93.2 2,062 81.4 

SPMS 89 9.1 43 9.3 78 14.5 18 3.2 228 9.0 

PPMS 59 6.0 28 6.1 37 6.9 12 2.2 136 5.4 

PRMS 0 0.0 0 0.0 0 0.0 7 1.3 7 0.3 

Other 42 4.3 25 5.4 31 5.8 1 0.18 99 3.9 

Age (mean, SD) *** 51.3 12.2 48.3 13.2 50.6 12.8 48.0 12.9 49.9 12.7 

Sex***           

Female 764 78.2 332 72.2 384 71.2 437 78.6 1,917 75.7 

Male 213 22.0 128 27.9 155 28.8 119 21.4 615 24.3 

Note. Chi square for categorical variables, ANOVA for continuous variables. * p<.05, ** p<.01, *** p<.001.
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Table 2  

Outcomes for Year 3 by Center 

Outcome 

Center 1 Center 2 Center 3 Center 4 Total 

Number Percent Number Percent Number Percent Number Percent Number Percent 

Participants 977 38.6 460 18.2 539 21.3 556 22.0 2,532 100 

>=1DMT*** 719 73.6 274 59.6 327 60.7 526 94.6 1,846 72.9 

Brain MRI 498 51.0 209 45.4 199 36.9 311 55.9 1,217 48.1 

Cervical MRI*** 338 34.6 112 24.4 99 18.4 129 23.2 678 26.8 

Thoracic MRI*** 142 14.5 106 23.0 21 3.9 101 18.2 370 14.6 

Hospitalizations*** 57 5.8 49 10.7 23 4.3 47 8.5 176 7.0 

ER Visits*** 79 8.1 51 11.1 31 5.8 46 8.3 207 8.2 

UC Visits*** 34 3.5 24 5.2 9 1.7 1 0.2 68 2.7 

Relapses*** 33 3.4 14 3.0 14 2.6 36 6.5 97 3.8 

Hospitalization 
(mean, SD)** 0.07 0.31 0.15 0.48 0.05 0.23 0.09 0.32 0.09 0.34 

ED Utilization 
(mean, SD)** 0.10 0.36 0.15 0.45 0.06 0.28 0.09 0.30 0.1 0.35 

UC Utilization 
(mean, SD)** 0.04 0.21 0.06 0.27 0.02 0.13 0.002 0.04 0.03 0.19 

Relapse Rate (mean, 
SD)** 0.04 0.20 0.04 0.23 0.03 0.18 0.06 0.27 0.04 0.22 

Note. Chi square for categorical variables, ANOVA for continuous variables. * p<.05, ** p<.01, *** p<.001.  
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Table 3  

Patient Characteristics and Outcomes by Derivation and Validation Cohort 

Characteristic 

Total Derivation Cohort Validation Cohort 

Number Percent Number Percent Number Percent 

Participants 2,532 100 1,773 70.0 759 30.0 

Age (mean, SD) 49.9 12.7 49.9 12.8 49.9 12.6 

Sex       

Male 615 24.2 434 24.4 181 13.5 

Female 1,917 75.8 1,339 75.6 578 86.5 

Phenotype       

RRMS       

No 470 18.5 313 17.6 157 20.1 

Yes 2,062 81.5 1,460 82.4 602 79.9 

SPMS       

No 2,304 90.9 1,619 92.3 685 90.2 

Yes 228 9.1 154 7.7 74 9.8 

PPMS       

No 2,396 94.6 1,684 95.0 712 93.8 

Yes 136 5.4 89 5.0 47 6.2 
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Characteristic 

Total Derivation Cohort Validation Cohort 

Number Percent Number Percent Number Percent 

PRMS       

No 2,525 99.7 1,770 99.8 755 99.5 

Yes 7 0.0 3 0.0 4 0.0 

Other       

No 2,433 96.0 1,706 96.2 727 95.8 

Yes 99 4.0 67 3.8 32 4.2 

DMT       

No 686 27.1 468 26.4 218 28.7 

Yes 1,846 72.9 1,305 73.6 541 71.3 

Brain MRI       

No 1,315 51.9 901 50.8 414 54.5 

Yes 1,217 48.1 872 49.2 345 45.5 

Cervical MRI       

No 1,854 73.2 1,283 72.3 571 75.2 

Yes 678 26.8 490 27.7 188 24.3 

All UC       

No 2,274 89.8 1,592 89.8 682 89.8 
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Characteristic 

Total Derivation Cohort Validation Cohort 

Number Percent Number Percent Number Percent 

Yes 258 10.2 181 10.2 77 10.2 

Thoracic MRI       

No 2,162 85.4 1,506 86.4 656 86.4 

Yes 370 14.6 267 13.6 103 13.6 

Hospitalizations       

No 2,356 93.0 1,651 93.1 705 92.9 

Yes 176 7.0 122 6.9 54 7.1 

ED Visits       

No 2,325 91.8 1,628 91.8 697 91.8 

Yes 207 8.2 145 8.2 62 8.2 

UC Visits       

No 2,464 97.3 1,725 97.3 739 97.4 

Yes 68 2.7 48 2.7 20 2.6 

Relapse       

No 2,435 96.2 1,699 95.8 736 96.9 

Yes 97 3.8 74 4.2 23 3.1 
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Table 4  

Bivariate Analysis (n = 2,532) 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 

1. Phenotype 1 ¥ 30.0*** 164.2*** 30.3*** 11.3* 10.5* 16.6* 4.1 1.06 7.6 122.1*** 

2. Age ¥ 1 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 

3. Gender 30.0*** ¥ 1 1.0 1.32 0.06 0.81 0.1 .40 4.6* 0.38 14.8* 

4. DMT 164.2*** ¥ 1.0 1 177.2*** 64.8*** 45.4*** 2.1 .10 0.45 8.2** 215*** 

5. Brain MRI 30.3*** ¥ 1.3 177.2*** 1 781.1*** 329.3*** 2.2 5.7* 0.67 29.9*** 45*** 

6. Cervical MRI 11.3* ¥ .06 64.8*** 781.1*** 1 944.8*** 1.47 9.3** 3.6 31.6*** 54.9*** 

7. Thoracic MRI 10.5* ¥ .81 45.4*** 329.3*** 944.8*** 1 6.2* 11.8** 6.0* 33.8*** 81.4*** 

8. Hospitalization 16.6** ¥ .10 2.1 2.2 1.47 6.2* 1 582.3*** 20.1*** 11.3** 19.6*** 

9. ED Visit 4.1 ¥ .40 0.1 5.7* 9.25** 11.8** 582.3** 1 26.3*** 17.5*** 9.4* 

10. UC Visit 1.06 ¥ 4.6* 0.45 .67 3.55 6.0* 20.1*** 26.3*** 1 0.06 29.1*** 

11. Relapse 7.6 ¥ .38 8.2** 29.9*** 31.6*** 33.8*** 11.3** 17.5*** 0.06 1 14.1** 

12. Center 122*** ¥ 14.8** 215.1*** 45.2*** 54.9*** 81.4*** 19.6** 9.4* 29.1*** 14.1** 1 

Note. Chi square for categorical variables, Pearson r for continuous variables. ED=emergency department; UC=urgent care. * p <0.05, 
** p<0.01, *** p<0.001. Test could not be performed = ¥. 
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Table 5  

Model Comparison Metrics 

Metric Formula 

Accuracy (true positives + true negatives) / (true positives + true negatives + false positives + false negatives) 

True Positive Rate (TPR)-
Sensitivity true positives / (true positives + false negatives) 

False Positive Rate (FPR)-
Specificity false positives / (false positives + true negatives) 

Negative Predictive Value 
(NPV) True negatives / (true negatives + false negatives) 

Precision (PPV) true positives / (true positives + false positives) 

Area Under the Curve 
(AUC) Graphical Plotting of TPR vs. FPR 

Matthews Correlation 
Coefficient (MCC) 

 
Note. Adapted from “Random Forest vs Logistic Regression: Binary Classification for Heterogeneous Datasets,” by K. Kirasich, T. 
Smith and B. Sadler, 2018, SMU Data Science Review, 1(3), p. 13.   



STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 80 

Table 6  

Relapse Model Comparison Metrics-Cross-Validated (Accuracy) Stepwise Logistic Regression 

Metric Result 
Accuracy 0.781 

True Positive Rate (TPR) 0.379 

False Positive Rate (FPR) 0.797 

Negative Predictive Value (NPV) 0.970 

MCC 0.083 

Precision 0.069 

F Score 0.117 

AUC 0.629 

  



STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 81 

Table 7  

Relapse Model Comparison Metrics-Cross-Validated (Accuracy) LASSO 

Metric Result 

Accuracy 0.962 

True Positive Rate (TPR) 0.000 

False Positive Rate (FPR) 1.000 

Negative Predictive Value (NPV) 0.962 

MCC ¥ 

Precision ¥ 

F Score ¥ 

AUC 0.510 
Note. Test could not be performed = ¥. 
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Table 8  

Relapse Model Comparison Metrics-Cross-Validated (Accuracy) Ridge 

Metric Result 

Accuracy 0.962 

True Positive Rate (TPR) 0.000 

False Positive Rate (FPR) 1.000 

Negative Predictive Value (NPV) 0.962 

MCC ¥ 

Precision ¥ 

F Score ¥ 

AUC 0.670 

Note. Test could not be performed = ¥. 
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Table 9  

Relapse Model Comparison Metrics-Cross-Validated (Accuracy) Random Forest 

Metric Result 

Accuracy 0.904 

True Positive Rate (TPR) 0.310 

False Positive Rate (FPR) 0.927 

Negative Predictive Value (NPV) 0.971 

MCC 0.166 

Precision 0.145 

F Score 0.198 

AUC 0.690 
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Table 10  

Relapse Model Comparison Metrics-Cross-Validated (MCC) LASSO 

Metric Result 

Accuracy 0.773 

True Positive Rate (TPR) 0.414 

False Positive Rate (FPR) 0.788 

Negative Predictive Value (NPV) 0.971 

MCC 0.093 

Precision 0.071 

F Score 0.122 

AUC 0.622 
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Table 11  

Relapse Model Comparison Metrics-Cross-Validated (MCC) Ridge 

Metric Result 

Accuracy 0.810 

True Positive Rate (TPR) 0.414 

False Positive Rate (FPR) 0.826 

Negative Predictive Value (NPV) 0.973 

MCC 0.119 

Precision 0.086 

F Score 0.143 

AUC 0.645 
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Table 12  

Relapse Model Comparison Metrics-Cross-Validated (MCC) Random Forest 

Metric Result 

Accuracy 0.895 

True Positive Rate (TPR) 0.345 

False Positive Rate (FPR) 0.916 

Negative Predictive Value (NPV) 0.972 

MCC 0.172 

Precision 0.141 

F Score 0.200 

AUC 0.685 
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Table 13  

Relapse Model Comparison Metrics-Cross-Validated (F1) LASSO 

Metric Result 

Accuracy 0.962 

True Positive Rate (TPR) 0.000 

False Positive Rate (FPR) 0.000 

Negative Predictive Value (NPV) 0.962 

MCC ¥ 

Precision ¥ 

F Score ¥ 

AUC 0.629 

Note. Test could not be performed = ¥.  
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Table 14  

Relapse Model Comparison Metrics-Cross-Validated 

Metric Result 

Accuracy 0.877 

True Positive Rate (TPR) 0.414 

False Positive Rate (FPR) 0.896 

Negative Predictive Value (NPV) 0.975 

MCC 0.185 

Precision 0.136 

F Score 0.205 

AUC 0.653 

  



STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 89 

Table 15  

Relapse Model Comparison Metrics-Cross-Validated (F1) Random Forest 

Metric Result 

Accuracy 0.858 

True Positive Rate (TPR) 0.207 

False Positive Rate (FPR) 0.884 

Negative Predictive Value (NPV) 0.966 

MCC 0.053 

Precision 0.065 

F Score 0.10 

AUC 0.667 
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Table 16  

All-Cause Urgent Care Model Comparison Metrics-Cross-Validated (Accuracy) Stepwise Logistic Regression 

Metric Result 

Accuracy 0.897 

True Positive Rate (TPR) 0.442 

False Positive Rate (FPR) 0.949 

Negative Predictive Value (NPV) 0.938 

MCC 0.410 

Precision 0.493 

F Score 0.466 

AUC 0.763 
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Table 17  

All-Cause Urgent Care Model Comparison Metrics-Cross-Validated (Accuracy) LASSO 

Metric Result 

Accuracy 0.912 

True Positive Rate (TPR) 0.416 

False Positive Rate (FPR) 0.968 

Negative Predictive Value (NPV) 0.936 

MCC 0.450 

Precision 0.593 

F Score 0.489 

AUC 0.692 
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Table 18  

All-Cause Urgent Care Model Comparison Metrics-Cross-Validated (Accuracy) Ridge 

Metric Result 

Accuracy 0.896 

True Positive Rate (TPR) 0.234 

False Positive Rate (FPR) 0.971 

Negative Predictive Value (NPV) 0.918 

MCC 0.283 

Precision 0.474 

F Score 0.313 

AUC 0.751 
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Table 19  

All-Cause Urgent Care Model Comparison Metrics-Cross-Validated (Accuracy) Random Forest 

Metric Result 

Accuracy 0.912 

True Positive Rate (TPR) 0.351 

False Positive Rate (FPR) 0.975 

Negative Predictive Value (NPV) 0.930 

MCC 0.421 

Precision 0.614 

F Score 0.446 

AUC 0.754 
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Table 20  

All-Cause Urgent Care Model Comparison Metrics-Cross-Validated (MCC) Ridge 

Metric Result 

Accuracy 0.895 

True Positive Rate (TPR) 0.403 

False Positive Rate (FPR) 0.950 

Negative Predictive Value (NPV) 0.934 

MCC 0.381 

Precision 0.477 

F Score 0.437 

AUC 0.758 
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Table 21  

All-Cause Urgent Care Model Comparison Metrics-Cross-Validated (MCC) Random Forest 

Metric Result 

Accuracy 0.916 

True Positive Rate (TPR) 0.351 

False Positive Rate (FPR) 0.979 

Negative Predictive Value (NPV) 0.930 

MCC 0.441 

Precision 0.659 

F Score 0.458 

AUC 0.766 
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Table 22  

Relapse Model Comparison Metrics-All Predictive Models  

Model Accuracy TPR FPR NPV MCC Precision F1 Score AUC 

Logistic Regression (Accuracy) 0.781 0.379 0.797 0.97 0.083 0.069 0.117 0.629 

LASSO (Accuracy) 0.962 0 1 0.962 ¥ ¥ ¥ 0.51 

Ridge (Accuracy) 0.962 0 1 0.962 ¥ ¥ ¥ 0.67 

Random Forest (Accuracy) 0.904 0.310 0.927 0.971 0.166 0.145 0.198 0.69 

Logistic Regression (MCC) 0.781* 0.379* 0.797* 0.97* 0.083* 0.069* 0.117* 0.629* 

LASSO (MCC) 0.773 0.414 0.788 0.971 0.093 0.071 0.122 0.622 

Ridge (MCC) 0.810 0.415 0.826 0.973 0.119 0.086 0.143 0.645 

Random Forest (MCC) 0.895 0.345 0.916 0.972 0.172 0.141 0.2 0.685 

Logistic Regression (F1) 0.781* 0.379* 0.797* 0.97* 0.083* 0.069* 0.117* 0.629* 

LASSO (F1) 0.962 0 1 0.962 ¥ ¥ ¥ 0.585 

Ridge (F1) 0.877 0.414 0.896 0.975 0.185 0.136 0.205 0.653 

Random Forest (F1) 0.858 0.207 0.884 0.966 0.053 0.065 0.10 0.667 

Note. * Logistic regression results are the same across all optimization techniques. Test could not be performed = ¥. 
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Table 23  

All-Cause Urgent Care Model Comparison Metrics-All Predictive Models 

Model Accuracy TPR FPR NPV MCC Precision F1 Score AUC 
Logistic Regression (Accuracy) 0.897 0.442 0.949 0.938 0.410 0.493 0.466 0.763 

LASSO (Accuracy) 0.912 0.416 0.968 0.936 0.450 0.593 0.489 0.692 

Ridge (Accuracy) 0.896 0.234 0.971 0.918 0.283 0.474 0.313 0.751 

Random Forest (Accuracy) 0.912 0.351 0.975 0.930 0.421 0.614 0.446 0.754 

Logistic Regression (MCC) 0.897* 0.442* 0.949* 0.938* 0.410* 0.493* 0.466* 0.763* 

LASSO (MCC) 0.912* 0.416* 0.968* 0.936* 0.450* 0.593* 0.489* 0.692* 

Ridge (MCC) 0.895 0.403 0.950 0.934 0.381 0.477 0.437 0.758 

Random Forest (MCC) 0.916 0.351 0.979 0.930 0.441 0.659 0.458 0.766 
Note. * Logistic regression results are the same across all optimization techniques. 
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Table 24  

Performance Relapse Indices 

Index Result 
ΔperfA=perfRF −perfLR 1.054-.829=0.225 (27.1%) 

ΔperfA1=perfLASSO−perfLR -¥ (MCC and F1 not calculated for LASSO) 

ΔperfA2=perfRR−perfLR -¥ (MCC and F1 not calculated for Ridge) 

ΔperfM=perfRF−perfLR 1.057-.829*=0.228 (27.5%) 

ΔperfM1=perfLASSO−perfLR 0.837-0.829*=0.008 (0.9%) 

ΔperfM2=perfRR−perfLR .907-.829*=0.078 (9.4%) 

ΔperfF=perfRF−perfLR 0.820-0.829*=-0.009 (-1.1%) 

ΔperfF1=perfLASSO−perfLR -¥ (MCC and F1 not calculated) for LASSO 

ΔperfF2=perfRR−perfLR 1.043-.829*=0.214 (25.8%) 
Note. Results are same as accuracy optimization = *. MCC and F1Test could not be performed = ¥. 
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Table 25  

Performance All-Cause Urgent Care Indices 

Index Result 
ΔperfA=perfRF −perfLR 1.621-1.639=-0.018 (-1.1%) 

ΔperfA1=perfLASSO−perfLR 1.631-1.639-0.008 (-0.5%) 

ΔperfA2=perfRR−perfLR 1.347-1.639=0.292 (-17.8%) 

ΔperfM=perfRF−perfLR 1.665-1.639=0.026 (1.58%) 

ΔperfM1=perfLASSO−perfLR * 

ΔperfM2=perfRR−perfLR 1.665-1.639=-0.063 (-3.84%) 
Note. Results are same as accuracy optimization= *.  
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Figure 1. A Diagram of IHI Model for Improvement Showing Plan-Do-Study-Act process. Taken from “How to Improve,” by 

Institute for Healthcare Improvement, n.d. (http://www.ihi.org/resources/Pages/HowtoImprove/default.aspx). Copyright 2019 by John 

Wiley and Sons.  

http://www.ihi.org/resources/Pages/HowtoImprove/default.aspx


STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 101 

 

Figure 2. Representation of the Tradeoff Between Flexibility and Interpretability Using Different Statistical Learning Methods. Taken 

from Introduction to Statistical Learning: With Applications in R (p. 25), by G. James, D. Witten, T. Hastie, and R. Tibshirani, 2013, 

New York, NY: Springer Nature. Copyright 2013 by Springer Nature.  
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Figure 3. Ridge Regression Coefficient Estimates for Each Value of λ. Taken from Introduction to Statistical Learning: With 

Applications in R (p. 216), by G. James, D. Witten, T. Hastie, and R. Tibshirani, 2013, New York, NY: Springer Nature. Copyright 

2013 by Springer Nature. 
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Figure 4. Box Plot of Age by Center. Copyright 2020 by SAS 9.4. 
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Figure 5. Relapse ROC Curve Model Comparison Optimized for Accuracy. Copyright 2020 by R. 
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Figure 6. Relapse Gain Curve Model Comparison Optimized for Accuracy. Copyright 2020 by R.  
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Figure 7. Relapse ROC Curve Model Comparison Optimized for MCC.  

Copyright 2020 by R. 
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Figure 8. Relapse Gain Curve Model Comparison Optimized for MCC. Copyright 2020 by R.  
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Figure 9. Relapse ROC Curve Model Comparison Optimized for F1. Copyright 2020 by R.  
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Figure 10. Relapse Gain Curve Model Comparison Optimized for F1. Copyright 2020 by R. 
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Figure 11. All-Cause Urgent Care ROC Curve Model Comparison Optimized for Accuracy. Copyright 2020 by R.  
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Figure 12. All-Cause Urgent Care Gain Curve Model Comparison Optimized for Accuracy. Copyright 2020 by R.  
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Figure 13. All-Cause Urgent Care ROC Curve Model Comparison Optimized for MCC. Copyright 2020 by R. 
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Figure 14. All-Cause Urgent Care ROC Curve Model Comparison optimized for MCC. Copyright 2020 by R.  
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Figure 15. Relapse Model Measures Comparison Including All Optimizations (Accuracy, MCC, F1). Copyright 2020 by R.  
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Figure 16. All Relapse Model ROC Curves Including All Optimizations (Accuracy, MCC, F1). Copyright 2020 by R.  
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Figure 17. All-Cause Urgent Care Model Measures Comparison Including All Optimizations (Accuracy, MCC). Copyright 2020 by R.  
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Figure 18. All-Cause Urgent Care Models ROC Curves Including All Optimizations (Accuracy, MCC). Copyright 2020 by R. 
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Appendix A 

IRB Approval 

Dartmouth College • Dartmouth-Hitchcock Medical Center 
COMMITTEE FOR THE PROTECTION OF HUMAN SUBJECTS 

CPHS.Tasks@Dartmouth.edu • 603-646-6482 
 

SOCIAL, BEHAVIORAL, and NON-CLINICAL RESEARCH PLAN 
CPHS template v. 10/18/2016 

 
Please complete: CPHS#                                          PI: Brant Oliver (brant.j.oliver@dartmouth.edu)  
  

Important Note:  The CPHS Department (Chair & Scientific) Review Form is required with this application.  Find the 
form in the RAPPORT Library or on the CPHS Website.  
 

• Respond to each item, even if to indicate N/A or not applicable 
• Attach and/or upload this form as your ‘Investigator Protocol’ in Rapport 
• If you are completing this form on a Mac, indicate your answer to any checkboxes by bolding or highlighting, or by 

deleting any incorrect options. 
 

 
1. Introduction and Background 

 
Historically, MS care has been studied and improved at the basic science, individual and population levels of analysis.  

However, in the new era of healthcare reform these approaches, while necessary and important, will no longer be sufficient.  A 
paradigm shift towards the inclusion of systems-level approaches will be required to study and improve MS care and to 
demonstrate its value.  This new focus derives from three critical developments.  First, the IOM reports1 on quality and safety 
deficiencies in the U.S. healthcare system and the IHI Triple Aim2 have called for a new systems-oriented focus and continuous 
improvement culture.  Second, Wennberg’s seminal research on geographic variation,3 which established the Dartmouth Atlas of 
Health Care,4 demonstrated that local practice culture and patterns can displace evidence-based care and influence unwarranted 
utilization and increased costs.5-6 Finally, the Affordable Care Act is driving a shift from productivity to systems-level value-based 

mailto:CPHS.Tasks@Dartmouth.edu
http://www.iom.edu/%7E/media/Files/Report%20Files/2001/Crossing-the-Quality-Chasm/Quality%20Chasm%202001%20%20report%20brief.pdf
http://www.ihi.org/offerings/Initiatives/TripleAim/Pages/default.aspx
http://www.dartmouthatlas.org/
http://www.dartmouthatlas.org/
http://www.hhs.gov/healthcare/rights/law/index.html
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reimbursement (“Accountable Care”).7 It follows that a new culture of continuous quality improvement (CQI) will be required to 
optimize quality and demonstrate the value of MS care at the systems level.  
 
Quality Indicators in Multiple Sclerosis 

There has been some discourse regarding quality indicators in MS care.  Cheung et al. (2010)15offer a substantive matrix of 
recommended quality metrics developed via a modified Delphi process which are heavily oriented towards clinical outcomes and 
related process measures (Figures 1 and 2).  These span thirteen symptom specific clinical outcome domains (e.g. depression, 
spasticity, falls, etc.) and nine process specific domains referred to as “General Health Domains of MS Care” (e.g. patient 
education provided at time of diagnosis, provision of community and social resources, etc.).  Recent work by the AAN 
(unpublished draft for public comment)16 (Figure 3) features a more concise yet similar collection of clinical and process measures 
focused on the provision of key clinical services and outcomes (e.g. falls screening, falls follow-up, depression screening, etc.), but 
also includes a functional health (quality of life) category.  While encouraging, this work falls short of enabling the global 
measurement of quality, cost, and value in MS care.  For example, cost, utilization, patient experience and satisfaction are not 
included in any of the current discourse, and disease modifying therapy (DMT) metrics and functional health measures are 
underrepresented compared to symptom management and clinical care process metrics.  Additionally, there is no representation of 
structural resource measures.  These limitations present challenges for cost-effectiveness analyses and the global assessment of the 
quality and value of MS healthcare services delivery. 
 
 
 
Towards Balanced Measurement of Quality and Value in MS 
 Donabedian’s “Structure, Process, Outcomes” conceptual framework is well-established and often utilized in healthcare 
improvement science and can provide a strong foundation for a more comprehensive assessment of system performance in MS 
healthcare delivery.17 Structural measures include staff, facilities, and resources- the inputs or resources utilized to drive processes 
and outcomes in system.  Process measures include practice patterns, e.g. MRI utilization, percentage of patients referred to social 
services, etc., very similar to many of the process measures listed in Figures 1-2.  These measures represent how available 
structural resources are utilized by the system to generate desired outcomes.  Metrics in this domain could span beyond those 
currently recommended to include a more detailed focus on disease modifying therapy (DMT) treatment initiation and access.  
Outcome measures represent the result of the employment of structural resources and processes to generate desired results.  
Outcome measures could include many of the metrics in Figures 1-2 such as depression status, annualized relapse rate, etc.  
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Metrics in this domain could span beyond those currently suggested to include a more detailed focus on DMT treatment related 
outcomes, such as employment and social security disability status.  
 Augmenting the Donabedian framework with Nelson’s Balanced Measures “Clinical Value Compass” framework can further 
specify process and outcomes measurement.18 Nelson’s model has four categories: (1) clinical outcomes (e.g. relapse rate, MRI 
status, symptoms); (2) functional health (e.g. self-efficacy, quality of life, social security disability status); (3) patient experience 
and satisfaction; and (4) utilization (e.g. MRI utilization, appointment frequency, ED utilization, etc.).  Categories 1-3 are 
considered to be quality measures, and category 4 represents cost/utilization.  Use of Nelson’s framework can enable calculations 
of value indices (Quality/Cost).18-19  

 The proposed study includes the application of this expanded conceptualization of quality, cost, and value measurement 
utilizing a hybrid combination of the Donabedian and Nelson frameworks.  Figure 4 demonstrates how these frameworks can be 
utilized to fit hypothetical examples of current metrics given in Figures 1-2, as well as additional measures which the current 
literature does not include.   
 
Driving Systems Level Improvement 
 Three critical elements are required for improving the quality and value of MS care: (1) systems performance focus; (2) 
collaboratives; and (3) improvement coaching. 
 Systems focus refers to a unit of analysis that is aggregated at a higher level than that of the individual clinician (e.g. physician, 
nurse practitioner, etc.) and which is focused at the level of the service delivery system (e.g. clinic, department, hospital), but at a 
lower level than that of epidemiological studies of populations (e.g. all MS patients in the United States).  This level of analysis is 
a new focus in MS, which historically has focused on bench science, individual level, or population level analyses.  While the 
recent development of quality metrics in MS is encouraging, its focus on individual clinician (e.g. physician, nurse practitioner) 
performance is unlikely to generate improvement on its own.  The IOM reports (discussed previously) have established that 
individual efforts to “work harder” or “work better” are usually not enough to generate effective changes without incorporating a 
system level improvement focus.  Additionally, Wennberg’s work on local practice culture and geographic variation (also 
discussed previously) has demonstrated that without the use of benchmarking, transparency and system level improvement efforts, 
local practice trends remain staunchly resilient, often preventing the timely adoption of evidence based practices and stalling 
improvement efforts.  This suggests that without the inclusion of system-level improvement efforts, the well-intentioned creation 
of MS quality metrics may only succeed in making hard working clinicians frustrated as they labor in vain to meet expectations 
that are impossible to reach. 
 Improvement collaboratives have been shown to facilitate system-level performance improvement20-21 because they can 
facilitate benchmarking and transparency of system-level performance, accelerate the rate of learning, and motivate rapid cycle 
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improvement efforts.  Collaboratives are defined as a group of two or more clinical care delivery systems which are focused on the 
same population and care delivery type (e.g. multiple sclerosis) that agree to share aggregated system level performance data, 
conduct benchmarking, and engage in learning and improvement together to enable accelerated improvement for all participating 
sites.  The Cystic Fibrosis Foundation Learning and Leadership Collaborative (CFF LLC) 11 is an example of a systems-level 
improvement collaborative.  The proposed study includes a small scale improvement collaborative design similar to that of the 
successful CFF LLC model and follows the general design recommended by the Institute for Healthcare Improvement (IHI) 
Breakthrough Series.22 

 Improvement coaching facilitates, guides, and organizes improvement efforts within healthcare delivery systems.  Attempts to 
support teams in health care improvement have been reported in the literature for several decades and include supportive roles 
such as coaches, facilitators and helpers.23-27 Coaching actions include exploring the context where the team provides care and 
services, building relationships and communication processes with the improvement team and leaders, offering helping actions to 
support making improvements and reinforcing the improvement process by providing technical training and support.  According 
to Gustafson (2013), coaching and improvement collaborative components are equally effective in achieving desired clinical 
outcomes improvement, and combining them is synergistic and additive.28 The proposed study recommends the utilization of an 
experienced improvement coach who has successfully guided improvement teams in a variety of contexts, including the CFF LLC 
and others, in combination with an improvement collaborative model. 
 
Mesosystem level interaction of microsystems in MS disease modifying therapy (DMT) access 
  A priority that is shared by persons with MS, clinicians, industry, suppliers, and insurers is timely supply and sustained 
adherence to DMT (DMT access), which is well established as the basic fundamental backbone of MS care.40-45 A related critical 
aspect annual surveillance with brain MRI, which is utilized to monitor MS disease status and detect progression.46 Current 
discourse on quality measures in MS addresses DMT and MRI to some degree, but not with specificity.15-16 It follows that in order 
to address system level quality of MS care using a CQI collaborative, DMT and MRI utilization should be an initial process 
performance focus, and that the systems pathway contributing to DMT access be studied.  Clinical microsystems concepts and 
terminology are helpful to employ to articulate this approach.  Clinical microsystems represent the smallest possible unit of front-
line healthcare service delivery and are the focus point for front-line healthcare improvement work.9, 19 In MS care, each MS 
clinical care system (MS clinic or MS center) is a clinical microsystem.   
 The second order of systems is known as a mesosystem, 19 which is defined as two or more interacting microsystems engaged 
in a shared performance purpose.  In the context of DMT access there are three microsystems involved: (1) the MS clinic; (2) the 
specialty pharmacy; and (3) the insurance provider.  Together these three microsystems comprise a “DMT Access Mesosystem” 
(Figure 5).  There has not yet been any formal systems level academic or practical study done on this pathway from a healthcare 
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improvement science perspective.  The current state of interaction of these three microsystems appears to be loosely coupled and 
highly fragmented, with very little shared understanding between microsystem units or focus on collaborative mesosystem level 
performance.  This may result in DMT access barriers at multiple levels (clinic to pharmacy, pharmacy to insurer, etc.).  Although 
the primary focus for the MSCQI Collaborative is on MS clinical microsystems performance improvement, CQI interventions 
based in those microsystems aimed at improving DMT and MRI performance will need to include the entire mesosystem, 
including specialty pharmacies and insurers.         
 
Rationale 

Systems-based CQI approaches, such as Lean/Six Sigma8 and Clinical Microsystems9 are currently utilized in some healthcare 
settings across the United States.  Regional and national CQI collaboratives utilizing these improvement methodologies have 
demonstrated significant results.  The Northern New England Cardiovascular Network (NNE) Disease Study Group has utilized a 
shared data registry and QI methods to reduce morbidity and mortality across cardiac surgery centers in the northeastern U.S.10 On 
an even larger scale, over 110 Cystic Fibrosis Foundation (CFF) centers have participated in national level QI collaboratives 
which utilize a shared systems-level registry and QI methods.  The CFF collaboratives have reduced mortality, improved life 
expectancy, reduced morbidity, and improved a number of process quality indicators.11-14 Data registries such as NARCOMS and 
the Slifka Longitudinal MS Study, have made important strides investigating MS care at the population level of analysis.  
Unfortunately, these registries are unable to conduct systems-level analyses, and there has not yet been investigation at the systems 
level regarding geographic variation, quality, and value of MS care.  Additionally, there has not yet been an effort of any kind in 
MS including the use of improvement collaboratives aimed at bettering MS related outcomes, processes, quality or value.  This 
study will establish the first QI collaborative for MS care in the US and will test the effects of QI interventions on selected priority 
performance indicators. 
 

 
2. Objectives and Hypotheses 

 
Objective 
This is a 3 year study which aims to establish a CQI collaborative of four (4) MS centers/clinics (microsystems), to gather and 
benchmark systems-level performance across sites and for the collaborative as a whole, and then to study the effect of CQI 
interventions on improving system-level performance outcomes across microsystems.  
 

http://engineering.dartmouth.edu/sixsigma/
http://www.clinicalmicrosystem.org/
http://www.nnecdsg.org/
http://www.cff.org/aboutCFFoundation/
http://narcoms.org/
http://www.nationalmssociety.org/research/about-our-research-programs/targeted-research/sonya-slifka-study/index.aspx
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Specific Aims 
1. To establish systems-level performance indicators by obtaining quarterly performance measures, aggregated by MS 

center/clinic (microsystem) and the entire MSCQI Collaborative. 
2. To conduct studies of variation in performance across microsystems and to utilize benchmarking analyses to identify top 

performers. 
3. To study the comparative improvement of selected primary process performance indicators (DMT and MRI process measures) 

over a 3 year period (Years 2-3) in microsystems receiving IHI Breakthrough Series CQI interventions versus those not 
receiving CQI intervention.  

 
Primary Endpoint 
The primary endpoint for this study is percentage of eligible MS patients on disease modifying therapy (DMT access), which is 
operationally defined as the total number of eligible patients on DMT/the total number of patients seen per quarter at a 
participating center for whom DMT is an appropriate treatment option.  
 
Secondary Endpoints   
This study will employ a balanced measures conceptual framework (Nelson et al 2004) that is commonly utilized in healthcare 
quality improvement to measure quality and value at the systems level.  From this framework, measures from four functional 
domains will be employed: (1) clinical process and outcome measures; (2) functional health measures; (3) patient experience 
measures; and (4) cost and utilization measures.   
 
Secondary objectives are listed below by category: 
1) Clinical Outcomes: Depression (PHQ-9), relapse rate, Patient Determined Disease Steps (PDDS).   
 
2) System level (MS center level) aggregate Clinician and Group Consumer Assessment of Healthcare Providers and Systems 

(CG-CAHPS) scores will be reported quarterly by participating MS centers. 
 
3. Study Design 

 
Describe all study procedures, materials, and methods of data collection: 
 
This is a two-part prospective study to be conducted over 3 years with option to extend to 5 years.  In the first part (Year 1), we 
will gather baseline performance data from participating MS clinics (microsystems), create a combined MSCQI systems-level 
database, and conduct analyses of performance variation and benchmarking (Specific Aims 1 &2).  In the second part of the study 
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(Years 2-3), we will investigate the effect of CQI intervention on primary endpoints and selected secondary measures (Specific 
Aim 3).     
 
Benchmarking and Longitudinal Performance Monitoring: Years 1-3 

Specific aims 1 and 2 will be addressed by quarterly benchmarking of all primary and selected secondary endpoint measures 
across microsystems throughout the entire duration of the study.  Performance data will be aggregated by microsystem and by 
quarter and submitted electronically via an encrypted and password protected mechanism from each site to the MSCQI Hub Site.  
No personal identifying information will be collected.  Quarterly data collected from sites will be analyzed to create quarterly 
benchmarking reports for each microsystem and performance reports for the MSCQI collaborative as a whole (basic example of a 
simple benchmarking data display is given in Figure 8).     
 
Figure 8. Example of a site hypothetical benchmarking report (quarterly MRI utilization) 

 
  
CQI Step-Wedge/Dynamic Clinical Trial: Years 2-3 
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     The CQI intervention phase of the study will begin in Year 2.  We will employ a “step-wedge” design (also known as a 
Comprehensive Dynamic Trial).29-30  Compared to a standard RCT or cluster randomized design, the step-wedge design can allow 
for additional comparisons within microsystems pre- and post- CQI intervention, can allow all participating microsystems to 
receive CQI interventions, and can better accommodate smaller sample sizes (Figure 9a-c). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9a. Step-Wedge/Dynamic Clinical trial (3 Year Trajectory) 
 Benchmarking 
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CQI Intervention 

 The improvement intervention employed in this study is an IHI Breakthrough Series CQI intervention including an 

improvement collaborative and professional improvement coaching. 

 

IHI Breakthrough Series CQI Intervention with Professional Improvement Coaching 

 This intervention will be facilitated by clinical teams at participating sites under the guidance of a professional improvement 

coach utilizing the IHI improvement collaborative model.  A hybrid adaptation of the Cystic Fibrosis Foundation (CFF) Learning and 

Leadership Collaborative (LLC) general structure and process as described by Godfrey and Oliver (2014)11 and the IHI Breakthrough 

Series improvement collaborative model22 will be utilized.  One center will be randomized to this intervention in Year 2.   

 The selected center(s) for the CQI intervention will form an improvement team consisting of members from the clinic itself.  

Each team will be advised by the professional improvement coach and instructed in basic improvement methods via a structured 

curriculum including didactic instruction, supervised application, networking and support provided through on-site meetings, online 

webinars, and coaching telephone calls (Appendix A).  Each improvement team will conduct a system level context assessment of its 

clinical microsystem9 with a primary focus on the DMT access and brain MRI monitoring performance and a secondary focus on a 

selected secondary measure, e.g. patient satisfaction.  With guidance from the improvement coach, teams will then formulate small 

scale interventions and associated real-time monitoring measures aimed at improving process performance for the primary endpoint 

measures (DMT and MRI).  Teams will then pursue rapid cycle implementation, testing, and modification using repetitive Plan-Do-

Study-Act (PDSA) cycles.35 Unlike large scale implementation science approaches which follow slower longitudinal trajectories and 

are more rigidly designed, rapid cycle improvement science approaches such as proposed here are more flexible, adaptive, and short-

term.  For example, a typical PDSA cycle lasts 2-4 weeks and a typical healthcare improvement trajectory has multiple, successive 

PDSA cycles, with each cycle adapting and improving upon the last.  Successive real-time modifications in the improvement strategy 



STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 127 

will be made at the microsystem level by improvement teams based on measured performance feedback.  Feedback will be provided 

via real-time Statistical Process Control (SPC) 38-39measurement (example in Figure 10) conducted directly by improvement teams on 

the front-line during improvement work and via bi-annual benchmarking reports.         

 

Year 3 Intervention 

 The “Step-Wedge”/Dynamic Clinical Trial study design will allow for a flexible determination of study exposures in Year 3, 

which will allow for randomization of a second site to the IHI Breakthrough Series intervention(Figure 9)  

 

Year 2 Optional Readiness and Team Assesment Sub Study 

 The sub study will try to understand the readiness of a clinical improvement team prior to and during improvement activities, 

including knowledge of quality improvement, systems level variation, readiness to learnand team behaviors (psychology) enabling or 

disrupting improvement activities.  The sub study aims to investigate capability and readiness for engagement in improvement work 

with the collaborative and to identify potential barriers and facilitators to improvement across the different centers participating in the 

study.  It will complement the MSCQI study focus on system level variation and effectiveness of the QI intervention by providing a 

descriptive study of the longitudinal readiness and capability of sites to engage in QI, as well as how these characteristics mature over 

time,     

 We will employ qualitative interview and quantitative survey instruments designed to assess system and team readiness and 

capability for improvement work.  MS Center team members at sites participating in the MSCQI collaborative will be offered the 

opportunity to participate in this study during MSCQI study quarterly site visits beginning in Fall 2018 following IRB review and 

approval.  No patient participation or access to electronic medical record information is required.  Data will be collected from 

participating MS center teams at quarterly site visits. 
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Sub Study Design 

 Several assessments/tools will be utilized to gain an understanding into the knowledge a team has of Quality Improvement, the 

team’s readiness to learn, and behaviors. The assessments start at all consenting sites during the first quarterly site visit in Year 2 of 

the MSCQI study and include three time points (beginning of Year 2, beginning of Year 3, and end of Year 3 at the conclusion of the 

MSCQI study).  The assessments will be administered to administrators, staff and providers only. It will not be administered to 

patients or families and therefore there are no human subjects involved in the study.   

 

The assessments will cover four areas; Knowledge, Readiness to Learn, Behaviors and Team Progress 

Knowledge 

The Quality Improvement Knowledge Assessment (QIKat) to assess the clinics staff and providers QI knowledge 40 

 

This tool will be administered to all clinics staff and providers of all of the participating clinics (randomized and control) sites 

at all three time points.  The survey will teak each participant approximately 5 minutes to complete. A Survey Monkey tool 

will be used to administer the survey (see Appendix E). 

 

Readiness to Learn About QI 

 

Readiness will be assessed for system leaders and improvement teams at all three time points. 

 

Leaders: The clinic leader’s readiness to learn is a critical factor in influencing leadership tendency to create conditions for 

successful improvement for improvement teams.  Leader readiness will be assessed utilizing a modified tool “How Groups 

Learn Continuously” (London, M., 2007).    The tool consists of semi-structured questions, with Yes/No and free text options.  
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This tool will be administered utilizing a Survey Monkey at all three time points. It will be administered to the clinic leaders 

only as either a direct interview or a Survey Monkey link to the survey. It will take approximately 5 to 7 minutes to complete 

depending on the comments made by the participants (see Appendix F).  

  

Teams:  

The clinics staff’s and provider’s readiness to learn will also be assessed utilizing a similar tool modified from “How Groups 

Learn Continuously”. This tool also consist of semi-structured questions, Yes/No and free text options.  This tool will be 

administered to all of the clinic staff and providers utilizing a Survey Monkey tool at all three time points. This survey will 

take the participants approximately 5 minutes to complete (see Appendix G). 

 

Behaviors: 

We will evaluate MS Center teams randomized to QI interventions during the MSCQI study, utilizing a structured qualitative 

assessment tool to describe and characterize behaviors/actions that may have an effect on improvement activities and their 

outcomes. This is an observational tool and will be administered by the core research team on the teams randomized to the 

coach supported QI intervention only.  To correct for observer bias, at least two observers will utilize the tool to evaluate each 

team and reconcile by consensus any divergent assessments.  The output of the evaluation is to describe categories of 

behaviors that may enable or disrupt QI activities in the improvement team, and to describe how these behavior characteristics 

vary across QI teams and change over time.  The evaluation will take place during improvement team meetings and/or 

quarterly site visits during the MSCQI study (see Appendices H, I, and J).  

 

Team Progress 
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MSCQI sites randomized to QI intervention will undergo brief assessments of quality improvement progress utilizing the IHI 

“Assessment Scale for Collaboratives” (http://www.ihi.org/resources/Pages/Tools/AssessmentScaleforCollaboratives.aspx).  

This assessment will be completed monthly by each team that has been randomized to the coach supported QI intervention and 

by the coach, and the results compared.  The tool will take approximately 5 minutes to be complete. A Survey Monkey will be 

used to administer the assessment. (see Appendix K). 

 

Sub Study Analysis 

This study utilizes a descriptive prospective cohort design. Results will be analyzed at the site level with comparison across 

participating MSCQI sites and compared to the aggregate as a whole.    

There will be 3 to 12 possible time pointes depending on the survey type over the length of the research.  

Descriptive statistics will be utilized to describe the general performance levels for quantitative measures.  We will also 
perform a correlational analysis between the different measures to assess for interrelationships between these measures. We 
will use analysis of variance (ANOVA) to assess longitudinal change over multiple time points for these measures to evaluate 
if statistically significant changes in performance occurred during the course of the study.  We will use thematic analysis to 
develop core themes from the qualitative data collected to organize into potential barriers and facilitators as well as an 
assessment of overall readiness to engage in improvement work. 

 
Sub Study Progress Monitoring 

 

Participation in the sub-study is at the discretion of each participating center/site and a center’s decision to participate in the 

sub-study will not affect the conduct of the parent (main) study in any way.  For the sites participating in the sub study, there 

will be monthly and quarterly opportunities for the core research team to interact with the participating clinics. At each 

monthly MSCQI collaborative webinar, the group will review the status surveys completed and outstanding.  During the 

quarterly site visits, the core research team will have the opportunity to review assessments and work to validate data. 
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Additionally there will be quarterly reviews with the supervising investigator to conduct integrity checks and review the 

overall study progress and adherence to the approved study protocol.  

 

Study Population  

There are two levels of participation in this study: (1) system level administrative; and (2) individual level clinical.  

System Level Administrative: The first level of participation is at the system level.  It requires the reporting of de-identified 

administrative system level data aggregated to the system level by the four participating centers.  This data will also include 

covariates such as payer mix and other relevant variables which will be used to adjust between centers.  The measures 

collected for this level of the study will be described subsequently in section 9. This level of the study does not include the 

collection or use of protected health information (PHI) and will not require informed consent 

Individual Level Clinical: The second level of the study is at the individual level.  It requires individual patients to complete 

self-report questionnaires and allow access to their medical records to abstract individual level data.  This level of the study 

will include access to PHI, and will require written informed consent. All data will be de-identified and aggregated to the 

center level prior to use in the data analyses for this study.   

Inclusion Criteria 

To be eligible to participate in the Individual Clinical Level portion of this study, candidates must meet the following eligibility 

criteria. 

1. Documented diagnosis of multiple sclerosis (MS) 

2. Age 18 years or older 
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3. Ability to understand the purpose and risks of the study and provide signed and dated informed consent and authorization to 

use protected health information (PHI) in accordance with national and local privacy regulations.   

Exclusion Criteria 

Candidates will be excluded from study entry if they are unable or unwilling to provide informed consent.  Data will not be 

abstracted from medical records for these patients for the study.  

 

Measures and Data Sources 

This study will employ a comprehensive system level performance measurement strategy featuring quarterly reporting, semi-

annual benchmarking data feedback to sites, a one year baseline assessment period, and a two year evaluation of QI 

intervention effects.   

Three data sources will be utilized for this study: (1) center level administrative data; (2) individual level data abstracted from 

medical records and subsequently de-identified and aggregated to the center level; and (3) individual self-report data connected 

by electronic data capture (EDC) methods that will subsequently be de-identified and aggregated to the center level.  Variables 

for the study are given in Table 2 below and are listed by Nelson’s domains (clinical outcomes, functional health outcomes, 

patient experience, and utilization/cost).  Table 2 lists data sources, the priority of the data collection method (core versus 

exploratory) and the type of endpoint (primary versus secondary).  Clinical and functional health measures, which are derived 

from medical record abstraction (MRA) or self-report questionnaires, require informed consent whereas patient experience, 

utilization, and covariate measures, which are derived from administrative data, will not require consent (see Table 2a). Table 

2. MSCQI Collaborative Measures 

Category Measure(s) Type Source Frequency IC  
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Population 
Characteristics 

Race/Ethnicity, 
Socioeconomic status 
Primary language            
Marital status          
Education         
Employment                   
Co-morbidities, 
Concomitant meds, 
Current/previous DMTs 

Supplemental PRO 
Portal 

Annually Yes 

Clinical DMT Access 
(% on DMT) 

Core  
(Primary) 

Medical 
record 
abstract
ion 
(MRA) 

Quarterly Yes 

Clinical % MRI in past year Core MRA Quarterly Yes 

Clinical Relapses Core MRA 
& PRO 
Portal 

Quarterly Yes 

Clinical PHQ-9 Core PRO 
Portal 

Quarterly Yes 

Clinical Vitamin D Level Core PRO 
Portal 

Annually Yes 

Clinical PDDS  Core PRO 
Portal 

Semi-Annually Yes 
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Functional Health Neuro-QoL 
Ability to Participate in 
Social Roles and 
Activities 
Lower Extremity 
Function 
Upper Extremity 
Function 
Stigma 
Satisfaction with Social 
Roles and Activities 
Sleep Disturbance 
Communication 

Core PRO 
Portal 

Semi-Annually Yes 

Functional Health 
 

Neuro-QoL  
Anxiety 
Cognitive Function  

Core PRO 
Portal 

Quarterly Yes 

Functional Health WPAI Core PRO 
Portal 

Semi-Annually Yes 

Functional Health PROMIS Fatigue SF Core PRO 
Portal  

Quarterly Yes 

Patient 
Experience 

BAI Core PRO 
Portal 

Quarterly Yes 

Patient 
Experience 

CG-CAHPS 
My Health Confidence 

Core Admini
strative  

Annually No 
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Your Opinion Matters 

Patient 
Experience 
Adherence 

TSQM-9 Core PRO 
Portal 

Semi-Annually Yes 

Utilization MRI Core Admini
strative 

Quarterly No 

Utilization Office Visits 
ED Visits 
Hospitalization 

Core Admini
strative 

Quarterly No 

 

Table 2a. Descriptive & Covariate Measures: Collected Annually by Center (Administrative) 

Category Measure Information 

Population Core Demographics % Female Gender 

Population Core Demographics % RRMS MS Disease Type 

Population Core Demographics Age distribution Age 

Region State Geography 

Payor Mix % Private Insurance Insurance coverage 

Payor Mix % Government 
Insurance 

Insurance coverage 
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Providers (MD, DO, NP, PA) #FTE Capacity 

Nursing (RN, LPN) #FTE Capacity 

Social Worker/Mental Health #FTE Capacity 

Rehab Providers (PT, OT, etc.) #FTE Capacity/Access 

Provider Visits Available Average #visits 
available per month 

Capacity/Access (Potential) 

Certification NMSS or CMSC 
certified 

Recognition as Center of 
Excellence for MS care 

Clinical Setting Academic, 
Community 
Hospital, Private 

Practice type 

Clinical Setting Urban, Rural Community setting 

 

 

Data Collection and Processing Pathway 

Data to be collected in this study will be abstracted quarterly in de-identified form via data downloads from electronic medical 

records and administrative records from participating centers and from the PRO Portal as previously described (see Figures 6-7).  

EMR Data will be entered by each site into a secure Redcap database maintained on the Dartmouth Hitchcock server.  No PHI will be 

entered into this database.  All PHI will remain at the specific sites.  Once the data has been aggregated into the Redcap database it 

will be submitted in a highly encrypted, aggregate form to a MSCQI hub site database along with the PRO data for management and 

analysis. Jefferson School of Population Health (JCPH) will provide data management and analyses for this study.  A hub site 

database will be constructed and managed by JCPH using its own resources and secure firewalls.  Security standards for JCPH will be 
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assured at computing levels required by Dartmouth Hitchcock Medical Center.  Site sub-investigators and/or their designees, and the 

MSCQI research coordinator will facilitate data abstraction and secure transmission to the hub site database with assistance and 

oversight provided by the study methodologist and the principal investigator.    

 

Participating Sites and Key Personnel 

 This study will be facilitated by four entities: (1) the core research team (MSCQI Hub Site); (2) an independent database 

management site (JCPH); (3) MSCQI sites (microsystems) and sub-investigators; and (4) the Research and Improvement Advisory 

Committee (RIAC). 

 

(1) MSCQI Hub Site and Core Research Team Personnel 

Leadership and management for the study will be centralized at the Dartmouth Population Health Collaboratory research hub 

site as previously described in Section 1.  The core research team will consist of the principal investigator (PI), the methodologist, the 

professional improvement coach, and the research program manager/study coordinator. 

 

• Principle Investigator (Brant Oliver, PhD, MS, MPH, APRN-BC, MSCN):  See Section 1. 

• Co-Investigator/Improvement Coach (Randy Messier MT, MSA, PCSH CCE): Mr. Messier will serve as improvement coach 

and co-investigator for this study.  He is an experienced professional improvement coach with management and administrative 

training and is also certified in Patient-Centered Specialty Home (PCSH CCE).  He has served successfully as a professional 

improvement coach for many hospitals and improvement collaboratives in the United States and Canada, including the CFF 

LLC national collaborative (during which time he has worked closely with Dr. Oliver)11 and multiple state-level improvement 

collaborations in Vermont, including recent work in the Optimizing Laboratory Testing Collaborative .   

http://vmsfoundation.org/simgrant


STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 138 

• Research Program Manager and Study Coordinator (Amy E. Hall, MS): Ms. Hall will serve as research program manager and 

study coordinator.  She has extensive experience in program management, study coordination and data abstraction. Her duties 

will include coordination between the hub site and participating MSCQI sites, regulatory and budgetary coordination, logistics, 

and data abstraction (including travel to MS centers for data abstraction). 

 

(2) Independent Data Management and Data Analytics Center (Jefferson College of Population Health Innovation) 

The MSCQI Collaborative study will maintain its research database at a site independent of the funding source and the study PI.  This 
is of particular importance in industry-funded and investigator-initiated studies to reduce actual and/or perceived risks of bias in design 
and conduct of the study and analysis of the data.  For this reason it is proposed that Jefferson College of Population Health Innovation 
(JCPH) provide data management for this study and that this study and that this aspect of the study be overseen by Alexis Skoufalos, 
EdD.  The MSCQI hub database will be constructed and managed by JCPH. 

 

(3) MSCQI Sites (Microsystems) and Sub-Investigators 

Four (4) multiple sclerosis centers/clinics (microsystems) from the eastern United States will participate in the MSCQI 

collaborative study.  Oversight for each participating site will be provided by a study sub-investigator who will serve as a site principal 

investigator.  Site investigators are experienced MS clinicians and/or researchers who have worked with the study PI (Dr. Oliver) in the 

past and have the capability to manage and coordinate activities at their respective sites to accommodate the needs of the proposed study, 

including data abstraction and reporting, and engagement in CQI efforts during the intervention phase of the study.  Total panel size for 

all four sites combined is approximately 5,600 MS patients (N=5,600).  Participating sites represent urban and rural settings, academic 

and private practice contexts. 

• MGH Multiple Sclerosis Clinic (Site Investigator: Eric Klawitter, MD, M.Sc.): The MGH MS Clinic is an urban academic 

MS center in Boston, MA that is affiliated with the Partners Healthcare system.  It follows approximately 1,000 MS 

patients and is heavily involved with MS clinical trials.  Dr. Klawitter is a NMSS fellowship trained MS neurologist and 

research scientist with expertise in MRI imaging.  He directs the MGH MS Clinic.   

http://www.massgeneral.org/neurology/services/treatmentprograms.aspx?id=1814
http://www.massgeneral.org/neurology/doctors/doctor.aspx?id=18500&firstName=Eric&lastName=Klawiter&initial=C.&title=MD&ageGroup=A&query=%7B%22center%22%3A%2224%22%2C%22program%22%3A%22%22%2C%22locations%22%3A%5B%5D%2C%22languages%22%3A%5B%5D%2C%22gender%22
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• University of Vermont (UVM) Multiple Sclerosis Center (University of Vermont Medical Center (Site Investigator: Andrew 

Solomon, MD): The UVM Multiple Sclerosis Center is a rural academic MS center in Burlington, VT which follows 

approximately 1,500 MS patients. It is affiliated with the University of Vermont (UVM) Medical School, and is heavily 

involved with clinical trials research.   

 

 

• Neurology Associates Multiple Sclerosis Center of Greater Orlando (Site Investigator: Patricia Pagnotta, MS, APRN-BC, 

MSCN): The multiple sclerosis practice at Neurology Associates of Greater Orlando represents a large private MS clinic, 

following approximately 1,000 MS patients.  The MS practice there has an extensive MS clinical trials research program 

paralleling similar programs in academic MS centers.  Patricia Pagnotta is an experienced certified MS nurse practitioner in 

the practice and is closely involved with the MS research program.  

• Concord Hospital Multiple Sclerosis Specialty Care Clinic (Site Investigators: Ann Caobt, DO and Jennifer Taylor, 

ARNP): The multiple sclerosis practice at Concord Hospital represents a small private hospital in a rural community.  The 

clinic follows approximately 1200 MS patients.   

4. Analysis 
 
Describe any qualitative tests and measures as well as quantitative methods: 

 

The data analytic plan for this study is intended to reflect, to the degree possible, the actual effects of system performance on 

population health.  The analysis population will include all administrative data collected at the system level combined with all 

individual level data collected from all consenting individuals, aggregated up to the systems level.  Statistical tests will be conducted 

using IBM SPSS Version 22 (Chicago, IL) and/or STATA (Statacorp Inc., College Station, TX) software with alpha set at p < .05.  

https://www.uvmhealth.org/medcenter/Pages/Conditions-and-Treatments/Multiple-Sclerosis.aspx
https://www.uvm.edu/medicine/neuro/?Page=profile.php&bioID=23160
https://www.uvm.edu/medicine/neuro/?Page=profile.php&bioID=23160
http://www.neurologyorlando.com/
http://www.neurologyorlando.com/our-team.cfm
http://www.neurologyorlando.com/our-team.cfm
http://www-01.ibm.com/software/analytics/spss/downloads.html
http://www.stata.com/
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Prior to analysis, all responses will be examined for accuracy of data entry, missing values, and fit between their distributions and the 

assumptions of the statistical analysis including normality, homogeneity of variance, linearity, and colinearity. Violations of the 

aforementioned assumptions will lead to transformations (square root, logarithm, or inverse) to reduce skewness, reduce the number of 

outliers, and improve the normality, linearity, and homoscedasticity of residuals.  Subsequently, specific descriptive and analytic 

examinations will be conducted by specific aim as described below. 

 

Specific Aim 1: To establish systems-level quality and value (i.e. cost-effectiveness, efficiency) performance levels by obtaining 

quarterly performance measures, aggregated by MS clinic (system) and the MSCQI Collaborative as a whole. 

Appropriate descriptive statistics will be conducted to describe basic system-level variation in primary endpoint measures 

(DMT and MRI) and selected secondary endpoint measures from each of the major balanced measurement domains (clinical, 

functional health, patient experience, and utilization).  Measures will be adjusted based on appropriate system level structural and 

individual level demographic characteristics which demonstrate statistically significant relationships with the dependent variable in 

univariate analyses.  

 

Specific Aim 2: To conduct studies of geographic variation in performance across MS clinics (microsystems) and utilize 

benchmarking analyses to identify top performers. 

A hierarchical linear model (HLM) for performance levels is recommended for Aim 2. The HLM will incorporate the 

performance measures and the effects of geographic location. To assess the importance of geographic variables, three types of models 

will be compared: a model with individual level variables only; a model with system level geographic effects that do not interact with 

person attributes; and a full model, allowing for geographic level random effects that differ by site. Both of the primary endpoint 

measures and at least one of each category of quality measures will be included in benchmarking analyses: (1) clinical measures (e.g. 

EDSS); (2) functional health measures (e.g. Neuro-QOL); and (3) a patient satisfaction measure (CG-CAHPS).  The Available 
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Benchmarks of Care (ABC) Benchmarking Method37 may also be utilized to benchmark variables that demonstrate substantive 

variation in key process or outcomes performance and to identify top performing sites by performance category. 

 

Specific Aim 3: To test the effect of rapid cycle CQI interventions in improving selected quality and value outcomes in participating 

sites 

Standard monitoring of all measures will continue throughout the intervention phase in Years 2-3 similar to that of Year 1.  

Longitudinal quantitative analyses, site specific real time assessments using statistical process control (SPC), and qualitative analyses 

can be conducted to determine improvement effect in intervention sites compared to controls and compared to each other. See sections 

11.4-11.6 below for detailed descriptions of analyses for this specific aim   

Primary Endpoint Analysis 

This section is relevant to the analysis of Specific Aim 3 as previously discussed above.  Longitudinal time series regression 

analyses will provide a robust assessment of overall intervention effects on DMT treatment access.  DMT access will be treated as the 

DV and compared between baseline and quarterly intervention time periods during Years 2-3, overall and stratified by intervention 

and benchmark. We will use Chi-square tests for categorical data and Student t-tests for continuous data. We will use multilevel 

XTME Poisson regression clustering to the clinic/center level to calculate adjusted risk ratios (RR) with 95% confidence intervals 

(95%CI) of the selected DV measures between the intervention and baseline periods adjusting for important system level structural 

and individual level demographic characteristics. To demonstrate temporal trends in performance, we recommend interrupted time 

series analyses of quarterly performance rates adjusting for covariates in the Poisson model. 

Secondary Endpoints 

Secondary endpoints, as described previously, will be analyzed using similar methods to the primary outcome variable.  

Longitudinal time series regression analyses will provide a robust assessment of overall intervention effects on secondary outcome 
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variables.  These variables will be treated as DVs and compared between baseline and quarterly intervention time periods during 

Years 2-3, overall and stratified by intervention and benchmark. We will use Chi-square tests for categorical data and Student t-tests 

for continuous data. We will use multilevel XTME Poisson regression clustering to the clinic/center level to calculate adjusted risk 

ratios (RR) with 95% confidence intervals (95%CI) of the selected DV measures between the intervention and baseline periods 

adjusting for important system level structural and individual level demographic characteristics. To demonstrate temporal trends in 

performance, we recommend interrupted time series analyses of quarterly performance rates adjusting for covariates in the Poisson 

model. 

Interim Analyses 

Two types of interim analyses will be conducted during the study: (1) benchmarking analyses (see Specific Aim #2 above); 

and (2) Statistical Process Control (SPC) analyses (see Specific Aim #3 above).  These sections are repeated below. 

1) Benchmarking Analyses (Specific Aim #2):  Benchmarking analyses will be conducted semi-annually and results reported as 

feedback to sites to contribute to the overall function and improvement mission of the MSCQI Collaborative.  A hierarchical 

linear model (HLM) for performance levels is recommended for Aim 2. The HLM will incorporate the performance measures 

and the effects of geographic location. To assess the importance of geographic variables, three types of models will be 

compared: a model with individual level variables only; a model with system level geographic effects that do not interact with 

person attributes; and a full model, allowing for geographic level random effects that differ by site. Both of the primary 

endpoint measures and at least one of each category of quality measures will be included in benchmarking analyses: (1) 

clinical measures (e.g. EDSS); (2) functional health measures (e.g. Neuro-QOL); and (3) a patient satisfaction measure (CG-

CAHPS).  The Available Benchmarks of Care (ABC) Benchmarking Method37 can be utilized to benchmark variables that 

demonstrate substantive variation in key process or outcomes performance and to identify top performing sites by performance 

category. 
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2) Statistical Process Control (Specific Aim #3):  SPC measurement methods38-39 will be utilized by centers randomized to the IHI 

Breakthrough Series QI intervention.  SPC analyses will be developed by front-line improvement teams during rapid cycle 

change interventions (PDSA cycles) to assess short-term, context- specific performance metrics and to adjust real-time CQI 

intervention efforts accordingly in order to maximize longitudinal improvement performance. An example of a SPC chart is 

given in Figure 10. 

Figure 10. A Statistical Process Control (SPC) Chart used in real time CQI work by improvement teams (for a site level process 
measure related to DMT access primary outcome) 
 

 
 
5. Study Progress Monitoring 

 
Note:  appropriate monitoring may include periodic assessment of the following: 
• data quality 
• timelines 
• recruitment and enrollment  
 
Provide a description of the methods which will be used to determine the progress of the study, including periodic 
assessments of data quality, timelines, recruitment, and enrollment as appropriate: 
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Study monitoring will be conducted on two levels: (1) investigator level; and (2) via a Research and Improvement Advisory 

Committee (RIAC). 

Investigator Level Monitoring 

The Dartmouth research hub site will monitor overall study progress in real time with adherence to quarterly time points 

established by the study schema given below.  This schema will provide the study timeline, which provides quarterly time points 

for data collection and transmission to the data analytics center (TBD), at which time a quarterly assessment of recruitment and 

enrollment will also be ascertained.  The study investigator will meet regularly with the data analytics center at a minimum of once 

monthly for ongoing work on data collection and analysis, and this work will also include a quarterly assessment of data quality.   

 
Table 1. Study Activities Schema 

 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 
Start of 
Quarter 

- 7/1/
17 
 

10/1 1/1/
18 

4/1 7/1 10/1 1/1/
18 

4/1 7/1 10/1 1/1/
19 

4/1 

Deadline for 
Deliverables 

12/3
1 

10/1 1/1 4/1 7/1 10/1 1/1 4/1 7/1 
 

10/1 1/1/
19 

 7/1 6/30 

Start-up, 
Contracting  

X             

Internal 
Review Board 
(IRB) initial 
submission 
and reviews 

X    X    X    X 

Annual 
Report to 
Funder 

    X    X    X 
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Measures 
collected 
(All Sites) 

 X X X X X X X X X X X X 

Benchmarkin
g Reports to 
Sites 

  X  X  X  X  X  X 

CQI 
Intervention  
(Step-Wedge 
Design) 

    X X X X X X X X X 

Coaching Site 
Visits 

   X X   X X   X X 

Coaching 
Calls with 
Teams 

    X X X X X X X X X 

Improvement 
Skills 
Webinars 

    X X X X  X X X X 

On-Site 
Sessions 

    X    X     

RIAC 
meetings 

  X  X  X  X  X  X 

 
Research and Improvement Advisory Committee (RIAC) 

The RIAC will provide balanced advisement, transparency and monitoring of study activities by key stakeholders and technical 

experts.  The RIAC will be chaired by a MS clinician or researcher selected by the Principal Investigator (Dr. Oliver), and will 

include at least one of each of the following additional members (also selected by the PI): (1) at least one person who has MS; (2) 

a scientific representative designated by the funder; (3) a healthcare quality improvement specialist and/or researcher; (4) a 

representative from a DMT specialty pharmacy; (6) a second MS specialist clinician or researcher; and (5) a representative from 

an insurer/payer (if available).    
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The RIAC will meet biannually with the Principal Investigator and other core research personnel as needed to discuss study 

progress and recommendations for the ongoing conduct of the study.  RIAC members will be bound by a confidentiality agreement 

and must complete online CITI training for human subjects research.  The RIAC will be of particular importance in assuring an 

appropriate practical balance between stakeholder needs, ethical standards, and risk of stakeholder bias in industry-funded and 

investigator-initiated research focused on the assessment and improvement of systems-level performance in MS centers/clinics.  

Maintaining this balance will be critical to the investigators and the funder in order to cultivate a high standard of credibility 

concerning the conduct of the study and the integrity of its methods and results. 

 

 
 
6. Risks & Benefits 
 

Note: Risks may be physical, psychological, social, legal, economic, to reputation, or others.  
  

a. Describe any potential risks, their likelihood and seriousness: 
 
Because this study does not employ any invasive procedures or treatments, the risk to participants for participating in the study 

is assumed to be minimal and no greater than that engendered by participating in routine MS care.  This study will include the 

collection of personal identifying information (PHI) which introduces associated risks, but these are estimated to be low as will be 

discussed in later sections addressing data security.  Study procedures will not alter standard multiple sclerosis care for participants or 

influence the patient-provider interaction or relationship in any way.  Data collected for this study will be managed by experienced 

personnel at a designated independent data analytics center (JCPH). 

 

Designated Data Analytics Center (JCPH) 

https://www.citiprogram.org/
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Data to be collected in this study will be abstracted quarterly in de-identified form via data downloads or manual abstraction 

from electronic medical records and administrative records from participating centers and from the PRO Portal as described below and 

in data flow process Figures 6-7.  Data will be submitted in aggregate form from the Dartmouth hub site to a MSCQI database for 

management and analysis.  Jefferson College for Population Health Innovation will provide data management and analyses for this 

study.  A hub site database will be constructed and managed by JCPH using its own resources and secure firewalls.  Site sub-

investigators and/or their designees, and the MSQCI research coordinator will facilitate data abstraction and secure transmission to the 

hub site database with assistance and oversight provided by the study methodologist and the principal investigator.  

JCPH was purposively recruited to provide research methodology and data analytics services for the MSCQI Collaborative 

study for the following reasons: (1) significant past history of working with academic institutions and multiple industry entities 

without a predominant interest or affiliation with any particular entity; (2) significant expertise in the organization and its leadership in 

population health research (including patient reported outcomes, quality of life research, and healthcare quality research); (3) capacity 

to serve as an independent data repository and data analytics entity functioning separate from the MSCQI Collaborative entities and 

the funding source, thus optimizing the integrity of data management and reducing threats to objectivity posed by stakeholder (funder, 

study site, etc.) interests.  

Patient Reported Outcomes (PRO) Portal Description 

 The PRO Portal system (see Appendices C and D) will include a secure browser and device compatible system with the ability 

to register role based users, ability to deploy validated electronic surveys, develop surveys, a graphical view module containing 

descriptive statistics for real-time acquired data, a system dashboard containing user characteristics, and a timeline module to 

document key historical events for groups of participants.  Participants will use system to enter health data, complete validated 

electronic surveys, document event driven events, i.e. MS relapse, concomitant medications, co-morbidities, etc.  Investigators will 

login to review de-identified aggregated data in a graphical view module for aggregate de-identified data downloads for study-related 

data analyses.  All PHI stored in the PRO Portal is 128 bit encrypted and fully compliant with current HIPAA standards (see Appendix 
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C).  Access to encrypted PHI in the PRO Portal will be upon secure log-in with the operations system by authorized users only.  

Participants will not be identified by name in de-identified data used for study analyses or publications and data collected will be used 

for research purposes only.      

 
b. Confirm that risks to subjects have been minimized, by use of procedures which are consistent with sound research 

design and which do not unnecessarily expose subjects to risk: 
 

As discussed in Part A above, actual risks to participants are assumed to be minimal and no greater than routine multiple 

sclerosis care and because de-identified data will be collected, confidentiality risks due to study participation are minimized.  

Additionally, the use of a step-wedge research design allows for rigorous empirical investigation of the research question utilizing a 

robust set of measures but with a low time duration and limited number of participating MS Centers.  Additionally, the study does not 

influence the patient-provider relationship or selection of multiple sclerosis medical treatments in any way.  This combination of study 

design characteristics effectively minimizes participant burden and risk.  

 
 

c. Describe why all the risks to subjects are reasonable in relation to both anticipated benefits and the knowledge 
expected to be gained from the study: 

 
As described in Part A and B above, risks associated with study participation are anticipated to be minimal and no greater than 

that associated with standard multiple sclerosis care.  The anticipated benefit of this study is the establishment of the first national 

quality improvement collaborative for multiple sclerosis in the United States and initial research on system level performance 

variation in multiple sclerosis care and the comparative evaluation of quality improvement interventions aimed at bettering multiple 

sclerosis care outcomes and care quality.  This study could greatly benefit the multiple sclerosis care community by generating new 

knowledge about best practices and new approaches to improving system level performance in managing this very common and costly 
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chronic illness population.  Finally, this study may also establish key initial findings demonstrating the feasibility of an improvement 

research collaborative for multiple sclerosis and a framework for subsequent research and development in this area.  

 
 

7. Unexpected Events or Incidental Findings 
 
Note: It may be important to consider the potential for certain unanticipated events to occur, for example: 
• finding an anomaly in a MRI 
• discovering child abuse 
• causing distress in interviews of a sensitive nature 

 
Describe potential events and provide a plan of action: 
 

Because this study does not employ any invasive procedures or treatments, the risk to participants for participating in the study 

is assumed to be minimal and no greater than that engendered by participating in routine MS care.  However, throughout the course of 

the study, every effort must be made to remain alert to possible adverse events (AEs).  If an AE occurs, the first concern should be for 

the safety of the subject.  If necessary, appropriate medical intervention should be provided. All participants in the study will be given 

a study information sheet which will contain contact information for the study investigator.  Any untoward or unfavorable medical 

occurrence in participants, including any abnormal sign, symptom, or disease, temporally associated with the subject’s participation in 

the research, whether or not considered related to the subject’s participation in the research, will be termed an “adverse event” and 

reported. 

Adverse events will be evaluated by the investigator or his medically qualified delegate to determine if the adverse event 

represents an unanticipated problem.  Adverse events that meet the following criteria will be deemed unanticipated problems and 

reported to the IRB: 

• The adverse event is unexpected 
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• The adverse event is related or possibly related to participation in the research 

• The adverse event suggests that the research places subjects or others at a greater risk of harm than was previously known or 

recognized 

 
8. Deception 

 
Does any part of this study involve deception or withholding of information from participants? 
 
☐  Yes  ☒  No 
 
If Yes, provide an explanation which addresses the following: 
• A description of the deception being used 
• Why the deception is necessary 
• A plan for debriefing, or providing subjects with the pertinent information after participation 

 
 
 

 
9. Equitable Participant Selection 
 

a. Estimated number of participants at Dartmouth CPHS reviewed sites:  
 

A sample size of 2,000 participants (cumulatively from all four participating sites) is estimated based upon the 

proposed study measures and data analytic plan.  Two of the participating sites (Orlando and MGH) have ceded IRB 

review to Dartmouth (representing approximately one half of the 2,000 total, or 1,000).  The other two participating centers 

(University of Vermont and Concord Hospital, representing the other 1,000 participants, have elected to undergo separate 

IRB review by their respective institutions).   
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b. Provide a justification of the proposed sample size 

This study aims to investigate and improve “real-life” MS care delivery at a variety of MS centers (microsystems) 

across the United States.  A convenience sample of four (4) MS centers/clinics (sites) that have expressed interest in 

participating in this study have been recruited, following approximately 5,600-6,000 persons with MS.  Actual sample size 

(total number of participants required) for data analyses for main effects based on our proposed data analytic plan is 

determined by the final number of variables selected for inclusion in the final regression model for main effects analysis.  

This will be determined based on univariate analyses of significant factor contributors to outcomes for each of the 

component measures as well as factor analyses which will identify significant clusters of variables which can be 

represented by the most significant contributors in each cluster (thus minimizing sample size demand).  Given that baseline 

data will be required to conduct univariate analyses and factor analyses to calculate the actual sample size for final main 

effects regression models, we used standard conventions for multiple regression modeling36 to estimate a maximum sample 

size for conducting primary analyses with acceptable power for final main effects regression models containing ten 

variables and repeated measures in a step-wedge research design.  We will use this as our final modeling constraint, i.e. a 

maximum of ten “highest priority variables” for each main effects primary endpoint regression analysis.  We estimate that 

a sample size of approximately 2,000 participants (500 per recruitment site) will be required for acceptable power for main 

effects analyses given these constraints.  To meet the recruitment goal of 2,000 participants, we will need to maintain 

participation (at the system level) of approximately one third of the total available multiple sclerosis patient population 

receiving standard care from each of the participating MS centers in the research collaborative.  We will not close the study 

to participation once the minimum N of 2,000 participants is achieved.  Because this is a minimal risk, minimal patient 

burden study, we will allow “all comers” wishing to participate to do so in the study throughout its entire duration.  

 
c. Define the target population: 
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The target population for this study is characterized as adults diagnosed with multiple sclerosis who receive standard 

multiple sclerosis care at one of the four participating multiple sclerosis centers in the research collaborative and meet 

inclusion and exclusion criteria for study participation. 

 

 
d. Vulnerable populations 

 
Note: Certain populations are considered vulnerable to coercion and undue influence and are provided with additional 
protections when participating in a research study.   
 
Identify any of the below populations which you plan to recruit for this study.  In addition, complete the form(s) 
linked with each population as necessary and upload on the ‘Supporting Documents’ page in Rapport.  

☐ Pregnant Women, Fetuses and Neonates 
☐ Children 
☐ People with impaired decision-making capacity 
 
The following populations may also be considered vulnerable to coercion or other undue influence: 
• Prisoners 
• People who are economically disadvantaged  
• The elderly  
• People who are illiterate or do not speak English 
• Students and employees 
 
Describe any other potentially vulnerable population(s) and the additional protections provided to them: 
 
Not applicable. 
 

 

http://www.dartmouth.edu/%7Ecphs/tosubmit/forms/
http://www.dartmouth.edu/%7Ecphs/tosubmit/forms/
http://www.dartmouth.edu/%7Ecphs/tosubmit/forms/
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10. Recruitment 

 
Describe method(s) of recruitment.  Associated advertisements and other materials to be used for recruitment should be 
uploaded to the ‘Consent Forms and Recruitment Materials’ page in Rapport. 

 
Participants will be recruited consecutively at the time of clinic visits at participating MS centers.  Research coordinators on site 

will offer participation by providing the informed consent (IC) form for review.  The IC form will be available on the PRO data 

collection device (see Appendices C & D) which will be on a tablet computer.  Paper versions of the IC form will be available for 

those wishing to have a paper copy.  The PRO interface will allow for written informed consent to be completed via tablet computer.  

Individual level data will be collected for these participants who have given informed consent.  Subsequent to enrollment, study staff 

and the Investigator will verify that participants are eligible per criteria. Upon confirmation of eligibility, participants will be assigned 

a registration number which will be used to identify data for each participant and link data derived from questionnaires to that 

abstracted from medical records, as well as to track which patients have given informed consent to participate.  Only individual sites 

will maintain records linking medical record numbers to study identification numbers but these will not be transmitted to the hub site 

or be used in benchmarking analyses other data analyses for the study. Prior to transmission of aggregated quarterly data to the hub 

site by participating MS centers, all PHI will be removed save for the study identifier.   

Participants will be withdrawn from the study for any one of the following reasons: 

• The participant withdraws consent or wishes to discontinue participation. 

• The participant is unwilling or unable to comply with the protocol. 

• A healthcare provider withdraws the participant from the study for medical reasons. 



STATISTICAL METHODS FOR MULTIPLE SCLEROSIS 154 

• Participants will notify the study staff in writing via standard letter or electronic communication of desire to discontinue 
participation at any time.   

 
 
11. Informed Consent, Assent, and Authorization 

 
All forms discussed in this section should be uploaded to the ‘Consent Forms and Recruitment Materials’ page in Rapport 

 
a. Please describe the consent and/or assent process, addressing the following: 

• Who will obtain consent/assent from participants 
• Where the consent/assent process will take place 
• The timeframe for providing information potential participants about a study, having the consent form signed, and 

beginning study activities 
• Any precautions taken to minimize the possibility of coercion or undue influence 
• The forms which will be used as well as any aids used to simplify scientific or technical information 
• How comprehension will be ensured 
 

Because PHI will be collected in this study, written informed consent will be obtained.  Data will be de-identified prior 

to transmission to the study data analytics center and a highly secure PRO data collection system will be used.  Participants 

will be offered participation and complete informed consent at the time of their regularly scheduled MS care appointments 

by study staff at participating MS Centers.  We anticipate that the risk of PHI dissemination will be minimal and the actual 

risk of participation for this study is considered minimal and no greater than that of standard multiple sclerosis care.  The 

study principal investigator may also be contacted with study related questions.  Patients desiring not to participate may 

inform local site study staff or the principal investigator at any time to opt out of study participation.  Those providing 

written informed consent will be able to participate in the study. 

 
 

b. Waiver(s) or alteration(s) may be requested for research that involves no more than minimal risk.   
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Indicate requested waiver(s) or alteration(s) below.  In addition, complete the corresponding section of the Waivers 
and Alterations Request Form and upload it to the ‘Consent Forms and Recruitment Materials’ page in Rapport.      

☐  For the informed consent process 
☐ For the documentation of informed consent 
☐  For the HIPAA Authorization to use and/or disclose PHI 
☐ For a waiver of the requirement for medical record documentation 

 
12. Compensation or Gifts 
 

Please describe any payments, gifts or reimbursements participants will receive for taking part in the study: 
 

No remuneration will be provided for participation in this study. 
  

 
 
13. Privacy of Participants  

 

Note: Methods used to obtain information about participants may have an effect on privacy.  For example: 
• Consent discussions or interviews held in public which concern sensitive subjects or behaviors 
• Observations of behavior, especially illicit behavior, in quasi-public settings 
 
Describe any activities or interactions which could lead to a breach of privacy and provide a plan to protect participant 
privacy: 

 

Data collected via the PRO mechanism carries a small risk to privacy because this data includes limited PHI elements.  

However, because data will be collected using a highly secure PRO mechanism and de-identified and numerically codified prior to 

transmission to the data analytic center for data analyses, there will be no record or information linking information gathered for 

http://www.dartmouth.edu/%7Ecphs/tosubmit/forms/
http://www.dartmouth.edu/%7Ecphs/tosubmit/forms/
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this study to the individuals providing that information.  All other data collected for this study will be at the system (MS Center) 

level and will not link to any form of PHI. 

 
 
14. Confidentiality of Data 

 
Note: Any person engaged in research collecting information about illegal conduct may apply for a Certificate of Confidentiality 
from the National Institute of Health.   

 
a. If disclosed, could any of the data collected be considered sensitive, with the potential to damage financial standing, 

employability, insurability, or reputation? 
 

☒  No  ☐  Yes 
 
If Yes, describe the data or information, the rationale for their collection, and whether a Certificate of 
Confidentiality will be obtained: 

 

Not applicable. 

 
b. Describe the safeguards employed to secure, share, and maintain data during the study, addressing any of the 

following which may apply:  
• Administrative, i.e. Coding of participant data  
• Physical, i.e. Use of locked file cabinets 
• Technical, i.e. Encrypted data systems 

 

The data collection procedures in this study include the collection of data with aggregation to the system (MS Center) level 

and transmission of this data to the data analytics center in de-identified, aggregate form.  The PRO platform used for this 

http://grants.nih.gov/grants/policy/coc/
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study includes sophisticated data security including 128 bit encryption and password protection for data transmissions on 

database access for study personnel.  The use of physical (non-electronic) records for this study will be minimal, and any 

physical records will be maintained in a double-locked environment, i.e. locked filing system in a locked office.  Finally, 

coding of participant data will be conducted on a system level, i.e. data will be linked to a population of individuals rather than 

to individual participants, i.e. to one of the four participating MS Centers. 

 
c. Describe the plan for storage or destruction of data upon study completion: 

 
Data for this study will be maintained in de-identified, aggregate format, in a secure, encrypted, and password protected 

storage system with redundancy back up protection maintained by JCPH,  the independent data analytics center. Data will not 

be maintained by any of the participating sites.  After all activities and data analyses are completed for this study, study data 

will be maintained for the minimum period specified by IRB requirements and then will be permanently deleted.     

 

FIGURES 

Figure 1 List of Draft Quality Indicators for MS (Cheung et al., 2010)   

Figure 2.  General Domains of MS Care (Cheung et al., 2010)  

Figure 3. Draft AAN Quality Measures Set (2014)  

Figure 4. Hybrid Donnabedian – Nelson Framework  

Figure 5. Mesosystem interactions: MS clinic, pharmacies, and insurance 

Figure 6. PRO Portal relationships to DMT pathway and data processing 

Figure 7. Donabedian-Nelson measurement framework 

Figure 8. Hypothetical example of a benchmarking Feedback report to centers 

Figure 9. Step-wedge design randomization schemas  
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Figure 10. Example of a SPC chart for use in measurement of rapid cycle improvement 

Figure 11.  Patient Reported Outcomes (PRO) Schedule 
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