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Abstract 

Invasive species can be devastating to native vegetation and can be difficult to 

identify unless properly trained. The best method for combating invasive species is to 

quickly identify and contain them. This project looks at a possible solution to difficult 

identification by creating a trained artificial neural network using TensorFlow that can 

categorize plant species by their venation patterns. This network could then be 

integrated into an application that identifies if a particular plant was invasive and allows 

for faster containment measures to be taken. For this project an artificial neural 

network was set up and tested using five different plant species; Acer campestre, Acer 

ginnala, Acer griseum, Acer platanoides, Acer negundo. Some of these species are 

invasive, but this project focused on categorizing species rather than if they are invasive 

or native. The images used for this project were pulled from the open-source Leafsnap 

dataset [1]. Leafsnap is a similar project that uses machine learning to categorize leaf 

species by leaf shape. The network was trained on a total of 135 images, 27 for each 

species, and tested with 35 images, 7 images for each species. After training, the 

network had an overall accuracy of 94% when categorizing by venation pattern. The 

preliminary results of this project show that with a larger dataset and a more refined 

artificial neural network, a reliable application can be created that will quickly identify 

invasive plants.  
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Introduction 

Statement of Purpose 

 “While some invasive plants are distinctive and easily recognized, many others are 

difficult to distinguish from one or more species of our native flora”[2]. That was from the book 

Mistaken Identity, a book about invasive plants that look similar to native ones. As more and 

more invasive species pop up and compete with local plants, it becomes imperative to find 

methods of dealing with these plants. Rejmánek states that there are three objectives to dealing 

with invasive species; prevention, early detection, and containment/eradication [3]. Although 

plant recognition may not be as helpful in preventing an invasion of a non-native species, it 

could become imperative in identifying and eradicating existing invasive plants. Rejmánek states 

that to achieve the second objective, early detection, “proper field experience and relevant 

sampling techniques (e.g. adaptive sampling, Thompson & Seber 1996) are necessary” [3]. 

Artificial neural networks are the leading technology in artificial intelligence and are 

used in many technologies such as facial recognition and self-driving. Facial recognition works by 

processing an image at low resolution to reject non-face regions and then evaluates the 

challenging regions at higher and higher resolutions [4]. The purpose of this project was to use 

neural networks to identify plant species by their venation patterns. It could be used to 

categorize invasive species and as a method for early identification and help prevent the 

damage caused by invasive plants.  
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State of the Art & Related work 

 In this section I will discuss three things; how leaf identification is being done or how it 

has been done, describe one existing automated leaf identification method, and provide a 

background of machine learning.   

Current State of the Art 

There are many resources that people can rely upon to identify plants, but there is 

always a need for the user to either be trained in identification or have an extensive amount of 

time to dedicate to identification. For example there are many books and websites that catalog 

species with information on the plant. Go Botany[5], for example, asks you several questions 

about the plant and returns a list matching those descriptors. The site only covers so many 

features before the user has to begin comparing one by one, which can still end up being 

tedious and time consuming. Another issue with this site is that it categorizes plants by location, 

which could cut out species that might not normally exist in that area such as invasive species 

[5]. 

 A method of finding invasive plants and determining impact in the area is aerial 

hyperspectral photos. Hyperspectral imaging works by collecting information from the 

electromagnetic spectrum. Certain objects have ‘spectral fingerprints’, which can be used to 

identify a certain material. After an aerial hyperspectral image is taken, someone can map 

where and how widespread invasive species are [6].This method of identification is crucial for 

early detection and containment. This method is not efficient because the cost for taking 
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hyperspectral images is high and an expert that can differentiate species is required to create 

the mappings. 

 The methods currently being used are not ideal for curtailing invasive species because 

they are either too slow or require extensive training. A possible solution to this problem is to 

create an application that categorizes plant species automatically from cell phone images. 

Leafsnap – An Automated Identification Tool 

 One such technology for plant identification that is already widely available is Leafsnap 

[1]. A leaf recognition app that was developed using facial recognition software and artificial 

intelligence. Kumar states why this software could help save time: 

“Without visual recognition tools such as Leafsnap, a dichotomous key (decision tree) 

must be manually navigated to search the many branches and seemingly endless nodes of the 

taxonomic tree. Identifying a single species using this process – by answering dozens of often-

ambiguous questions, such as, “are the leaves flat and thin?” – may take several minutes or even 

hours. This is difficult for experts, and exceedingly so (or even impossible) for amateurs.” [1]. 

Manual leaf identification requires extensive training and experience before someone 

can be reliably trusted to identify a species. An artificial neural network, on the other hand, 

would help speed up the identification of invasive plants and also make it easier for amateurs to 

find invasive plants. 

Leafsnap works by finding the outline of the leaf from an image, extracting curvature 

based features, and then identifies the leaf using a nearest neighbor search algorithm[1]. The 

nearest neighbor algorithm starts at one point in a map of comparable data, where each node is 
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connected by similar features to another node. Data that is extracted from the leaf is then 

compared to the nodes connected to the starting point and moves the node with the closest 

match. This repeats until a threshold for a certain match is reached. Leafsnap then returns the 

top 25 matches and boasts that 96.8% of queries have a match in the top five results. Leafsnap  

is able to discern 189 different species, so they are able to reduce the possible species by 98% 

and have a 96.8% accuracy.  Our work used a much smaller number of species, so our 

performance will be based on our top predicted species rather than top 5.  

Machine Learning 

Leafsnap solves the problem of identification by implementing an algorithm that 

compares existing data on features to an unidentified leaf. Another possible method for solving 

this problem is using an artificial neural network. Essentially, a machine is given a number of 

Tasks (T), which it is then rated on by its performance (P). The machine is supposed to improve 

with experience (E) [7]. For example, if we wanted to train a machine to differentiate between 

plant leaves, the machine’s tasks would be to take a picture and identify it. The machine would 

then be rated by whether it got the identification right or wrong. If the machine gets it right, it is 

rewarded making that outcome more likely. If the machine is incorrect, the connections leading 

to that outcome are inhibited and make the outcome less likely.  In comparison, Leafsnap uses a 

nearest neighbor approach, which is equivalent to a neural network with no hidden layers which 

can only separate species if their feature space is linearly separable.  Neural networks with 

hidden(middle) layers are able to discern a feature space with more complex boundaries. 
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In a little more detail, we understand that the machine is a neural network, where each 

node takes multiple inputs, and has one output. So by having many nodes at the beginning and 

slowly decreasing the number of nodes, we can filter a lot of binary input into one simple 

output. Each of these nodes has weights, which really means how much is needed to flip the 

nodes switch and change the output [8]. This is shown in Fig 1. Each of the circles is a node, and 

each of the arrows is a connection to another node. Each of these connections has a weight to it 

that determines where the information gets sent next until it reaches the end. The node in the 

output layer that has the most activation is the answer. 

For this project the number of nodes at the beginning is 256. This will then boil down to 

five nodes at the end, matching the number of species this network was being trained on. Data 

is sent to each node, weighted to decide what node it will send this data to next. This continues 

until one of the final nodes is reached, which is the machine's final answer. When training, if the 

network outputs a wrong answer, there is a feedback mechanism that weakens the weights of 

the nodes associated with that incorrect answer. This makes that specific wrong answer less 

likely to happen. The same feedback mechanism occurs when the network outputs a right 

Figure 1: Artificial Neural Network 
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answer. This time, the feedback mechanism strengthens those paths making the answer more 

likely to happen. After many training samples the network should  learn and improve its 

performance. 

Justification and Honors Worthiness 

 Invasive species have been a plight in the world for as long as people have been 

travelling. These species take away from native plants resources, leaving native plants starved 

and dying. From the U.S. Forest Service, “Invasive species have contributed to the decline of 

42% of U. S. endangered and threatened species” [9]. The only way to prevent this from 

happening is early detection and eradication. One issue with early detection is that many people 

are not trained to differentiate plants and some invasive plants look similar to native plants. This 

issue could be ameliorated by using a neural network, which is easier and faster to train than 

humans, to identify these plants. 

 I chose to create a system that identified plant species by their venation patterns. Based 

on my research, I found that most currently available applications identify leaves based on the 

outline of the leaf. Through this research I will determine if plants can be identified by their 

venation patterns, and if this method of identification could be used and incorporated with 

existing methods to bolster accuracy. 

Solution 

 This project had two goals. The first goal was processing the Leafsnap dataset so that 

the leaf is isolated from the background. The second goal was to create the neural network and 

train it to identify plant species using the vein patterns in the leaf. 



7 
 

Dataset 

  

  

 The network I created needed to categorize leaves by their venation patterns. As it is, 

the Leafsnap dataset is not conducive to this type of categorization and needs to be changed to 

fit those needs. The Leafsnap dataset contains the original picture taken in a lab setting and a 

segmented image of that picture that Leafsnap uses in their current system. Figure 2, above, is 

an example of an original lab image. This image is not ideal for training a network because there 

is a lot of superfluous data such as the color bars on the bottom and right side. Since the 

network needs to categorize by vein patterns, this extra data might interfere with the 

categorization process and produce a network that identifies the leaves by the color bar instead 

of the vein pattern. Figure 3, above, is an example of a segmented image. Figure 2 was 

processed by Leafsnap’s application and turned into Figure 3. This allowed Leafsnap to identify 

the species by the shape of the leaf. Figure 3 is ideal for Leafsnap’s system, but not for this 

system because it got rid of the venation patterns in Figure 2. This project needed an image that 

Figure 3: Acer Campestre Segmented Image Figure 2: Acer Campestre Lab Image 
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preserved the contents of the leaf but got rid of any arbitrary data around the leaf. To 

accomplish this, the segmented images were used as masks for the original image.  

 

 

 

 Figure 4, above, is an example of what we have done to the dataset to make it ideal for 

the network I created. Figure 4 was created using a software called GIMP, an open source image 

editing software. GIMP has a feature called Python-Fu which allows for a script that uses GIMP 

functions to run on multiple images. The script I wrote takes the original image and the 

segmented image and puts them on top of each other, resizing when necessary. Then the script 

creates a grayscale mask of the segmented image and inverts it. This cuts out the white space 

Figure 4: Acer Campestre Masked Image 
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and leaves a cutout of the leaf. Then the original image and the mask are combined to create 

something similar to Figure 4. This script was run for all of the images in the Leafsnap dataset. 

 Once the dataset was processed to meet the needs of the network, a script was 

developed that created a neural network, generated a histogram of the images, and trained the 

network using those histograms, described below.  

Neural Network 

 There were two types of data that were used as input to the neural network; a 

histogram of the image, and a ratio of the area of veins to the total area of the leaf.  A histogram 

of the image gets the color distribution of the image. Since the veins of the leaf are a much 

different color than the rest of the leaf, a histogram will show the concentration of veins to the 

rest of the leaf. The ratio contains the same information, but it is more focused. We needed to 

keep both because the ratio does not contain all of the veins and the histogram is not as focused 

on vein patterns. 

The histogram was generated by flattening an image array into a list of numbers. The 

ratio was generated by finding the area of the veins and dividing that by the total area of the 

leaf. To find the area of the edges, an image was first sent to Canny, a function from the library 

cv2. Canny detects edges by finding a large difference in color and then creates a black and 

white image of just the edges.  

 These two pieces of data were chosen because they both contain a lot of focused 

information. The neural network is trying to categorize the information that is given to it and it 

decides what is useful or not within the information. For example, if I try to train a neural 
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network to identify whether something in an image is either a dog or a dolphin, the neural 

network might use information in the background of the image, rather than the animal. Most 

pictures of dolphins are going to have a blue background because they live in the ocean. Pictures 

of dogs, on the other hand, will most likely not have a lot of blue in the background. If this data 

is not filtered out, the neural network might decide that all images with a blue background have 

dolphins in them. That is why it is important to choose data that is relevant to what the neural 

network should be trained on. A histogram of the image preserves the color distribution and 

contains information of just the leaf on vein concentration. The ratio contains that 

concentration as well and has the bonus of being impervious to changes in the zoom of the 

image. 

Discussion 

Results 

 Five different species were arbitrarily chosen to train and test the network. In total, 

there were 135 samples in the training set, 27 per species, and 35 samples in the testing set, 7 

per species. The network achieved a 94% accuracy with its first choice. Since any given network 

can be saved and used again, there is no need to discuss average accuracy across different 

networks. Instead we will discuss the network that achieved the highest accuracy. 

Acer campestre Acer ginnala Acer griseum Acer platanoides Acer negundo 

100% 71% 100% 100% 100% 

Table 1: Accuracy by Species 
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 Table 1 shows the accuracy that the neural network makes the correct match. Acer 

ginnala is the only leaf that the network does not categorize correctly. The network sometimes 

categorizes an Acer ginnala leaf as either Acer platanoides or Acer negundo. There is no 

discernible reason for this error. 

Reflection 

This project set up a dataset that can be used for future machine learning applications 

and created a neural network that can identify three species at an 94% success rate. The original 

goal for this project was to use machine learning to create an application that identifies leaves 

as either invasive or non-invasive. This project is a large step in the direction of this goal since it 

sets up an artificial neural network that can be trained to identify leaves. The missing link is a 

larger dataset that includes leaves in different orientations and ones that are taken in the field. 

 The reason that I was not able to get to the application phase of this project was largely 

due to the issues faced while creating the dataset. The original goals were created with the 

assumption that I would be able to use the Leafsnap dataset right out of the box. However, the 

Leafsnap dataset was not formatted in a way that I could easily set up a neural network. This 

meant that I had to spend much more time analyzing the dataset and creating a new dataset 

that allowed for training based on vein patterns. Through this issue, though, I have learned a lot 

about image processing and using GIMP scripts as a tool to process a lot of images quickly and 

efficiently. This is a valuable skill for anyone to have and could be useful for me specifically as I 

enter the professional world where this skill would set me apart. 

 I have also learned a lot about machine learning, and specifically about how to use 

Tensorflow, which is a machine learning tool. These skills are valuable because there are many 
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problems in the world that could be solved with machine learning. Now that I have the skillset 

to use this tool, I am better prepared to face professional problems that machine learning can 

solve. 

Future Work 

Neural Network 

 Currently the maximum accuracy that the neural network can reach is 94% with five 

species. This is comparable to Leafsnap as they claim that they have a 96% accuracy within the 

first five results across 189 different species. The next steps for this project on the machine 

learning side will be to train a network with more species and ensure that an accuracy rating of 

94% or higher is maintained. 

 It might be beneficial to explore different types of data for the training set which would 

raise the accuracy. This would include finding more information about the veins, such as the 

angles between them, their length, and their curve. This data could be difficult to find as lines 

are harder to map across pixels, but it would be very valuable and could raise the accuracy. 

Dataset 

 The biggest next step for this project would be obtaining a more comprehensive dataset 

that includes other types of images. Currently the data set I have created includes only lab 

images. These images ensured the leaves were flat in varying degrees of light which allow for 

the best data to be extracted. This network would fail on images that were taken in the field 
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that are either curved, have an indistinguishable background, or do not contain the contrast 

necessary to retrieve useful data.  

Conclusion 

 Invasive species have a destructive impact on native species that can cause plant species 

to become endangered. The methods that are currently being used to contain invasive plants 

rely on early detection. Without extensive training, properly identifying invasive species is not 

fast enough. This project is a step towards solving the problem of not being able to identify 

invasive species quickly or accurately. This project uses machine learning to train an artificial 

neural network to categorize five species by their venation patterns. The network achieved an 

average accuracy rating of 94% which is 2% lower than the Leafsnap project. To complete this 

project, a larger dataset is needed that includes more image types and more invasive species. 

Once a more comprehensive dataset has been compiled, an application can be made that could 

be used by anyone to identify invasive species and help stop their plight. 
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Appendix B: leaf_id.py 

# -*- coding: utf-8 -*- 
"""leaf_id.ipynb 
Author: Evan Parduhn 
Description: This script is used to train an artificial neural network to categorize 
             leaves according to their venation patterns 
Automatically generated by Colaboratory. 
 
Original file is located at 
    https://colab.research.google.com/drive/1goioTPOEeN8p4QkvPZLDrbbJsnrn_BoS 
""" 
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from __future__ import absolute_import, division, print_function, unicode_literals 
# Install TensorFlow 
import tensorflow as tf 
from google.colab import drive 
import os 
import math 
import numpy as np 
import cv2 
import pandas as pd 
import matplotlib.pyplot as plt 
import PIL 
# This needs to be catered to the users Google drive. the ls only serve as a manual check 
drive.mount('/content/drive') 
!ls "/content/drive/Shared drives/" 
!ls "/content/drive/Shared drives/EvanLeafSnap/" 
!ls "/content/drive/Shared drives/EvanLeafSnap/leafsnap-dataset" 
!ls "/content/drive/Shared drives/EvanLeafSnap/Vein_Identifier" 
 
# This function takes a filename and parses out the extra characters and returns just the name 
# of the species. This was made specifically for the data set I created so it may need to be changed 
def parseName(filename): 
  fl = filename[:-5] 
  if(fl[-2].isdigit()): 
    fl = fl[:-2] 
  elif(fl[-1].isdigit()): 
    fl = fl[:-1] 
  return fl 
fp = "/content/drive/Shared drives/EvanLeafSnap/Vein_Identifier/Test" 
iname = "" 
im_dict = {}    # Keeps track of the number samples for each species found 
tr_dict = {}    # Contains a list of the samples for each species in the training list 
te_dict = {}    # Contains a list of the samples for each species in the testing list 
dy = {}         # This is the answer key 
i=0 
 
for filename in os.listdir(fp): 
  fl = parseName(filename) 
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  if(fl not in im_dict.keys()): 
    im_dict[fl] = 1 
    tr_dict[fl] = [] 
    te_dict[fl] = [] 
    dy[fl] = i 
    i+=1 
  elif(fl in im_dict.keys()): 
    im_dict[fl] += 1 
  # This find the minimum number of samples to a species 
  # I did this so that the number of samples across both lists would remain the samples 
  # to hopefull prevent scewed results 
  i_min = min(im_dict.values()) 
  train_num = int(i_min * .8) 
  test_num = int(i_min * .2) 
 
# print(train_num,test_num) Used to debug 
# print(dy) 
 
# Finds the histogram of and image and returns it 
def genHist(fn): 
  im = PIL.Image.open(fn) 
  im = np.array(im) 
  hist,bins = np.histogram(im,bins=255, range=(0,255)) 
  return hist 
 
# Finds the edges in an image and creates a new image with just the edges 
# Returns the sum of the new image which is the area of the edges 
def genEdges(fn): 
  img = cv2.imread(fn) 
  gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
  edges = cv2.Canny(gray,20,50,apertureSize = 3) 
  return np.sum(np.asarray(edges)) 
 
# Uses genEdges to find the area of veins and returns that over the area of the leaf 
def genRatio(fn): 
  im = PIL.Image.open(fn) 
  im = np.array(im) 
  area = 0 
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  for arr in im: 
    for p in arr: 
      if(p.any() != 0): 
        area += 1 
  return int(genEdges(fn) / area) 
 
curr_name = "" 
# x arrays contain samples, y arrays contain the names 
x_train = [] 
x_test = [] 
y_train = [] 
y_test = [] 
 
# Evenly distributes samples into the training and testing arrays 
for filename in os.listdir(fp): 
  fl = parseName(filename) 
  if(len(tr_dict[fl]) < train_num): 
    x_train.append(np.append(genHist(fp + '/' + filename),genRatio(fp + '/' + filename))) 
    y_train.append(dy[fl]) 
    tr_dict[fl].append(genHist(fp + '/' + filename)) 
  elif(len(tr_dict[fl]) >= train_num and len(te_dict[fl]) <= test_num): 
    x_test.append(np.append(genHist(fp + '/' + filename),genRatio(fp + '/' + filename))) 
    y_test.append(dy[fl]) 
    te_dict[fl].append(filename) 
# You have to convert these to numpy arrays so they work with TensorFlow 
# Yes I know that numpy has an append function, but its confusing and I hate it 
x_train = np.asarray(x_train) 
x_test = np.asarray(x_test) 
y_train = np.asarray(y_train) 
y_test = np.asarray(y_test) 
# print(len(x_train),len(x_test),len(y_train),len(y_test)) # for debugging 
 
# These are useful functions if you want to send whole images to TensorFlow 
# I did not do that for the final implementation, but they are here for future implementations 
 
# Finds and returns the max shape in the training and testing arrays 
def findMaxShape(arr_tr, arr_ts): 
  ms = [0,0] 
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  for im in arr_tr: 
    if(im.shape[0] > ms[0]): 
      ms[0] = im.shape[0] 
    if(im.shape[1] > ms[1]): 
      ms[1] = im.shape[1] 
  for im in arr_ts: 
    if(im.shape[0] > ms[0]): 
      ms[0] = im.shape[0] 
    if(im.shape[1] > ms[1]): 
      ms[1] = im.shape[1] 
  return ms 
 
# adds padding to the samples according to the max shape returned by findMaxShape 
# Funny how the function names say exactly what they do 
# This is necessary because TensorFlow likes its training samples to all be the same size 
def addPadding(arr_tr, arr_ts): 
  ms = findMaxShape(arr_tr,arr_ts) 
  n_tr = [] 
  n_ts = [] 
  for im in arr_tr: 
    hd = ms[0] - im.shape[0] 
    wd = ms[1] - im.shape[1] 
    nim = np.pad(im,((0,hd),(0,wd)),'minimum') 
    n_tr.append(nim) 
  for im in arr_ts: 
    hd = ms[0] - im.shape[0] 
    wd = ms[1] - im.shape[1] 
    nim = np.pad(im,((0,hd),(0,wd)),'minimum') 
    n_ts.append(nim) 
  return np.asarray(n_tr),np.asarray(n_ts) 
# print(len(x_train),len(x_test),len(y_train),len(y_test)) # more debugging 
 
# Creates the training model in TensorFlow. Trains and then tests. I also added a predict 
# to see more detailed results 
model = tf.keras.models.Sequential([ 
  tf.keras.layers.Flatten(input_shape=(256,)), 
  tf.keras.layers.Dense(128, activation='relu'), 
  tf.keras.layers.Dropout(0.2), 
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  tf.keras.layers.Dense(len(dy), activation='softmax') 
]) 
 
model.compile(optimizer='adam', 
              loss='sparse_categorical_crossentropy', 
              metrics=['accuracy']) 
model.fit(x_train, y_train, epochs=200) 
model.evaluate(x_test,  y_test, verbose=2) 
model.predict(x_test) 

 


