
Identifying Plant Species by Leaf Venation Patterns Using

Machine Learning

By

Evan Parduhn

Honors Project Thesis Submitted in Partial Fulfillment

Of the Requirements for a Baccalaureate Degree “With Distinction”

In the Ron and Laura Strain Honors College of

THE UNIVERSITY OF INDIANAPOLIS

April 18th, 2020

Faculty Advisor: Paul Talaga, Ph.D.

Executive Director of Honors: James B. Williams, Ph.D

i

Abstract

Invasive species can be devastating to native vegetation and can be difficult to

identify unless properly trained. The best method for combating invasive species is to

quickly identify and contain them. This project looks at a possible solution to difficult

identification by creating a trained artificial neural network using TensorFlow that can

categorize plant species by their venation patterns. This network could then be

integrated into an application that identifies if a particular plant was invasive and allows

for faster containment measures to be taken. For this project an artificial neural

network was set up and tested using five different plant species; Acer campestre, Acer

ginnala, Acer griseum, Acer platanoides, Acer negundo. Some of these species are

invasive, but this project focused on categorizing species rather than if they are invasive

or native. The images used for this project were pulled from the open-source Leafsnap

dataset [1]. Leafsnap is a similar project that uses machine learning to categorize leaf

species by leaf shape. The network was trained on a total of 135 images, 27 for each

species, and tested with 35 images, 7 images for each species. After training, the

network had an overall accuracy of 94% when categorizing by venation pattern. The

preliminary results of this project show that with a larger dataset and a more refined

artificial neural network, a reliable application can be created that will quickly identify

invasive plants.

ii

Table of Contents

Abstract i

Table of Contents ii

List of Tables iii

List of Figures iii

Introduction 1

Statement of Purpose 1

State of the Art & Related work 2

Current State of the Art 2

Leafsnap 3

Machine Learning 4

Justification and Honors Worthiness 6

Solution 6

Dataset 7

Neural Network 9

Discussion 10

Results 10

Reflection 11

Future Work 12

Neural Network 12

Dataset 12

Conclusion 13

Literature Cited 14

Appendix 15

Appendix A: Acknowledgements 15

Appendix B: leaf_id.py 15

iii

List of Tables

Table 1: Accuracy by Species 11

List of Figures

Figure 1: Artificial Neural Network 5

Figure 2: Acer Campestre Lab Image 7

Figure 3: Acer Campestre Segmented Image 7

Figure 4: Acer Campestre Masked Image 8

1

Introduction

Statement of Purpose

 “While some invasive plants are distinctive and easily recognized, many others are

difficult to distinguish from one or more species of our native flora”[2]. That was from the book

Mistaken Identity, a book about invasive plants that look similar to native ones. As more and

more invasive species pop up and compete with local plants, it becomes imperative to find

methods of dealing with these plants. Rejmánek states that there are three objectives to dealing

with invasive species; prevention, early detection, and containment/eradication [3]. Although

plant recognition may not be as helpful in preventing an invasion of a non-native species, it

could become imperative in identifying and eradicating existing invasive plants. Rejmánek states

that to achieve the second objective, early detection, “proper field experience and relevant

sampling techniques (e.g. adaptive sampling, Thompson & Seber 1996) are necessary” [3].

Artificial neural networks are the leading technology in artificial intelligence and are

used in many technologies such as facial recognition and self-driving. Facial recognition works by

processing an image at low resolution to reject non-face regions and then evaluates the

challenging regions at higher and higher resolutions [4]. The purpose of this project was to use

neural networks to identify plant species by their venation patterns. It could be used to

categorize invasive species and as a method for early identification and help prevent the

damage caused by invasive plants.

2

State of the Art & Related work

 In this section I will discuss three things; how leaf identification is being done or how it

has been done, describe one existing automated leaf identification method, and provide a

background of machine learning.

Current State of the Art

There are many resources that people can rely upon to identify plants, but there is

always a need for the user to either be trained in identification or have an extensive amount of

time to dedicate to identification. For example there are many books and websites that catalog

species with information on the plant. Go Botany[5], for example, asks you several questions

about the plant and returns a list matching those descriptors. The site only covers so many

features before the user has to begin comparing one by one, which can still end up being

tedious and time consuming. Another issue with this site is that it categorizes plants by location,

which could cut out species that might not normally exist in that area such as invasive species

[5].

 A method of finding invasive plants and determining impact in the area is aerial

hyperspectral photos. Hyperspectral imaging works by collecting information from the

electromagnetic spectrum. Certain objects have ‘spectral fingerprints’, which can be used to

identify a certain material. After an aerial hyperspectral image is taken, someone can map

where and how widespread invasive species are [6].This method of identification is crucial for

early detection and containment. This method is not efficient because the cost for taking

3

hyperspectral images is high and an expert that can differentiate species is required to create

the mappings.

 The methods currently being used are not ideal for curtailing invasive species because

they are either too slow or require extensive training. A possible solution to this problem is to

create an application that categorizes plant species automatically from cell phone images.

Leafsnap – An Automated Identification Tool

 One such technology for plant identification that is already widely available is Leafsnap

[1]. A leaf recognition app that was developed using facial recognition software and artificial

intelligence. Kumar states why this software could help save time:

“Without visual recognition tools such as Leafsnap, a dichotomous key (decision tree)

must be manually navigated to search the many branches and seemingly endless nodes of the

taxonomic tree. Identifying a single species using this process – by answering dozens of often-

ambiguous questions, such as, “are the leaves flat and thin?” – may take several minutes or even

hours. This is difficult for experts, and exceedingly so (or even impossible) for amateurs.” [1].

Manual leaf identification requires extensive training and experience before someone

can be reliably trusted to identify a species. An artificial neural network, on the other hand,

would help speed up the identification of invasive plants and also make it easier for amateurs to

find invasive plants.

Leafsnap works by finding the outline of the leaf from an image, extracting curvature

based features, and then identifies the leaf using a nearest neighbor search algorithm[1]. The

nearest neighbor algorithm starts at one point in a map of comparable data, where each node is

4

connected by similar features to another node. Data that is extracted from the leaf is then

compared to the nodes connected to the starting point and moves the node with the closest

match. This repeats until a threshold for a certain match is reached. Leafsnap then returns the

top 25 matches and boasts that 96.8% of queries have a match in the top five results. Leafsnap

is able to discern 189 different species, so they are able to reduce the possible species by 98%

and have a 96.8% accuracy. Our work used a much smaller number of species, so our

performance will be based on our top predicted species rather than top 5.

Machine Learning

Leafsnap solves the problem of identification by implementing an algorithm that

compares existing data on features to an unidentified leaf. Another possible method for solving

this problem is using an artificial neural network. Essentially, a machine is given a number of

Tasks (T), which it is then rated on by its performance (P). The machine is supposed to improve

with experience (E) [7]. For example, if we wanted to train a machine to differentiate between

plant leaves, the machine’s tasks would be to take a picture and identify it. The machine would

then be rated by whether it got the identification right or wrong. If the machine gets it right, it is

rewarded making that outcome more likely. If the machine is incorrect, the connections leading

to that outcome are inhibited and make the outcome less likely. In comparison, Leafsnap uses a

nearest neighbor approach, which is equivalent to a neural network with no hidden layers which

can only separate species if their feature space is linearly separable. Neural networks with

hidden(middle) layers are able to discern a feature space with more complex boundaries.

5

In a little more detail, we understand that the machine is a neural network, where each

node takes multiple inputs, and has one output. So by having many nodes at the beginning and

slowly decreasing the number of nodes, we can filter a lot of binary input into one simple

output. Each of these nodes has weights, which really means how much is needed to flip the

nodes switch and change the output [8]. This is shown in Fig 1. Each of the circles is a node, and

each of the arrows is a connection to another node. Each of these connections has a weight to it

that determines where the information gets sent next until it reaches the end. The node in the

output layer that has the most activation is the answer.

For this project the number of nodes at the beginning is 256. This will then boil down to

five nodes at the end, matching the number of species this network was being trained on. Data

is sent to each node, weighted to decide what node it will send this data to next. This continues

until one of the final nodes is reached, which is the machine's final answer. When training, if the

network outputs a wrong answer, there is a feedback mechanism that weakens the weights of

the nodes associated with that incorrect answer. This makes that specific wrong answer less

likely to happen. The same feedback mechanism occurs when the network outputs a right

Figure 1: Artificial Neural Network

6

answer. This time, the feedback mechanism strengthens those paths making the answer more

likely to happen. After many training samples the network should learn and improve its

performance.

Justification and Honors Worthiness

 Invasive species have been a plight in the world for as long as people have been

travelling. These species take away from native plants resources, leaving native plants starved

and dying. From the U.S. Forest Service, “Invasive species have contributed to the decline of

42% of U. S. endangered and threatened species” [9]. The only way to prevent this from

happening is early detection and eradication. One issue with early detection is that many people

are not trained to differentiate plants and some invasive plants look similar to native plants. This

issue could be ameliorated by using a neural network, which is easier and faster to train than

humans, to identify these plants.

 I chose to create a system that identified plant species by their venation patterns. Based

on my research, I found that most currently available applications identify leaves based on the

outline of the leaf. Through this research I will determine if plants can be identified by their

venation patterns, and if this method of identification could be used and incorporated with

existing methods to bolster accuracy.

Solution

 This project had two goals. The first goal was processing the Leafsnap dataset so that

the leaf is isolated from the background. The second goal was to create the neural network and

train it to identify plant species using the vein patterns in the leaf.

7

Dataset

 The network I created needed to categorize leaves by their venation patterns. As it is,

the Leafsnap dataset is not conducive to this type of categorization and needs to be changed to

fit those needs. The Leafsnap dataset contains the original picture taken in a lab setting and a

segmented image of that picture that Leafsnap uses in their current system. Figure 2, above, is

an example of an original lab image. This image is not ideal for training a network because there

is a lot of superfluous data such as the color bars on the bottom and right side. Since the

network needs to categorize by vein patterns, this extra data might interfere with the

categorization process and produce a network that identifies the leaves by the color bar instead

of the vein pattern. Figure 3, above, is an example of a segmented image. Figure 2 was

processed by Leafsnap’s application and turned into Figure 3. This allowed Leafsnap to identify

the species by the shape of the leaf. Figure 3 is ideal for Leafsnap’s system, but not for this

system because it got rid of the venation patterns in Figure 2. This project needed an image that

Figure 3: Acer Campestre Segmented Image Figure 2: Acer Campestre Lab Image

8

preserved the contents of the leaf but got rid of any arbitrary data around the leaf. To

accomplish this, the segmented images were used as masks for the original image.

 Figure 4, above, is an example of what we have done to the dataset to make it ideal for

the network I created. Figure 4 was created using a software called GIMP, an open source image

editing software. GIMP has a feature called Python-Fu which allows for a script that uses GIMP

functions to run on multiple images. The script I wrote takes the original image and the

segmented image and puts them on top of each other, resizing when necessary. Then the script

creates a grayscale mask of the segmented image and inverts it. This cuts out the white space

Figure 4: Acer Campestre Masked Image

9

and leaves a cutout of the leaf. Then the original image and the mask are combined to create

something similar to Figure 4. This script was run for all of the images in the Leafsnap dataset.

 Once the dataset was processed to meet the needs of the network, a script was

developed that created a neural network, generated a histogram of the images, and trained the

network using those histograms, described below.

Neural Network

 There were two types of data that were used as input to the neural network; a

histogram of the image, and a ratio of the area of veins to the total area of the leaf. A histogram

of the image gets the color distribution of the image. Since the veins of the leaf are a much

different color than the rest of the leaf, a histogram will show the concentration of veins to the

rest of the leaf. The ratio contains the same information, but it is more focused. We needed to

keep both because the ratio does not contain all of the veins and the histogram is not as focused

on vein patterns.

The histogram was generated by flattening an image array into a list of numbers. The

ratio was generated by finding the area of the veins and dividing that by the total area of the

leaf. To find the area of the edges, an image was first sent to Canny, a function from the library

cv2. Canny detects edges by finding a large difference in color and then creates a black and

white image of just the edges.

 These two pieces of data were chosen because they both contain a lot of focused

information. The neural network is trying to categorize the information that is given to it and it

decides what is useful or not within the information. For example, if I try to train a neural

10

network to identify whether something in an image is either a dog or a dolphin, the neural

network might use information in the background of the image, rather than the animal. Most

pictures of dolphins are going to have a blue background because they live in the ocean. Pictures

of dogs, on the other hand, will most likely not have a lot of blue in the background. If this data

is not filtered out, the neural network might decide that all images with a blue background have

dolphins in them. That is why it is important to choose data that is relevant to what the neural

network should be trained on. A histogram of the image preserves the color distribution and

contains information of just the leaf on vein concentration. The ratio contains that

concentration as well and has the bonus of being impervious to changes in the zoom of the

image.

Discussion

Results

 Five different species were arbitrarily chosen to train and test the network. In total,

there were 135 samples in the training set, 27 per species, and 35 samples in the testing set, 7

per species. The network achieved a 94% accuracy with its first choice. Since any given network

can be saved and used again, there is no need to discuss average accuracy across different

networks. Instead we will discuss the network that achieved the highest accuracy.

Acer campestre Acer ginnala Acer griseum Acer platanoides Acer negundo

100% 71% 100% 100% 100%

Table 1: Accuracy by Species

11

 Table 1 shows the accuracy that the neural network makes the correct match. Acer

ginnala is the only leaf that the network does not categorize correctly. The network sometimes

categorizes an Acer ginnala leaf as either Acer platanoides or Acer negundo. There is no

discernible reason for this error.

Reflection

This project set up a dataset that can be used for future machine learning applications

and created a neural network that can identify three species at an 94% success rate. The original

goal for this project was to use machine learning to create an application that identifies leaves

as either invasive or non-invasive. This project is a large step in the direction of this goal since it

sets up an artificial neural network that can be trained to identify leaves. The missing link is a

larger dataset that includes leaves in different orientations and ones that are taken in the field.

 The reason that I was not able to get to the application phase of this project was largely

due to the issues faced while creating the dataset. The original goals were created with the

assumption that I would be able to use the Leafsnap dataset right out of the box. However, the

Leafsnap dataset was not formatted in a way that I could easily set up a neural network. This

meant that I had to spend much more time analyzing the dataset and creating a new dataset

that allowed for training based on vein patterns. Through this issue, though, I have learned a lot

about image processing and using GIMP scripts as a tool to process a lot of images quickly and

efficiently. This is a valuable skill for anyone to have and could be useful for me specifically as I

enter the professional world where this skill would set me apart.

 I have also learned a lot about machine learning, and specifically about how to use

Tensorflow, which is a machine learning tool. These skills are valuable because there are many

12

problems in the world that could be solved with machine learning. Now that I have the skillset

to use this tool, I am better prepared to face professional problems that machine learning can

solve.

Future Work

Neural Network

 Currently the maximum accuracy that the neural network can reach is 94% with five

species. This is comparable to Leafsnap as they claim that they have a 96% accuracy within the

first five results across 189 different species. The next steps for this project on the machine

learning side will be to train a network with more species and ensure that an accuracy rating of

94% or higher is maintained.

 It might be beneficial to explore different types of data for the training set which would

raise the accuracy. This would include finding more information about the veins, such as the

angles between them, their length, and their curve. This data could be difficult to find as lines

are harder to map across pixels, but it would be very valuable and could raise the accuracy.

Dataset

 The biggest next step for this project would be obtaining a more comprehensive dataset

that includes other types of images. Currently the data set I have created includes only lab

images. These images ensured the leaves were flat in varying degrees of light which allow for

the best data to be extracted. This network would fail on images that were taken in the field

13

that are either curved, have an indistinguishable background, or do not contain the contrast

necessary to retrieve useful data.

Conclusion

 Invasive species have a destructive impact on native species that can cause plant species

to become endangered. The methods that are currently being used to contain invasive plants

rely on early detection. Without extensive training, properly identifying invasive species is not

fast enough. This project is a step towards solving the problem of not being able to identify

invasive species quickly or accurately. This project uses machine learning to train an artificial

neural network to categorize five species by their venation patterns. The network achieved an

average accuracy rating of 94% which is 2% lower than the Leafsnap project. To complete this

project, a larger dataset is needed that includes more image types and more invasive species.

Once a more comprehensive dataset has been compiled, an application can be made that could

be used by anyone to identify invasive species and help stop their plight.

14

Literature Cited

[1] "Leafsnap: A Computer Vision System for Automatic Plant Species Identification," Neeraj

Kumar, Peter N. Belhumeur, Arijit Biswas, David W. Jacobs, W. John Kress, Ida C. Lopez,

João V. B. Soares, Proceedings of the 12th European Conference on Computer Vision

(ECCV), October 2012.

[2]Sarver, Matthew, et al. Mistaken Identity?: Invasive Plants and Their Native Look-

Alikes: an Identification Guide for the Mid-Atlantic. Delaware Department

Agriculture, 2008.

[3] Rejmánek, Marcel. "Invasive plants: approaches and predictions." Austral ecology 25.5

(2000): 497-506.

[4] Shah, Jay. “Neural Networks for Beginners: Popular Types and Applications.” Stats and Bots,

Stats and Bots, 16 Nov. 2017, blog.statsbot.co/neural-networks-for-beginners-

d99f2235efca.

[5] Native Plant Trust, 14 April 2020, https://gobotany.nativeplanttrust.org/simple/woody-

plants/woody-

angiosperms/#_filters=family,genus,habitat_general,state_distribution,plant_habit_wa,l

eaf_type_general_wa,leaf_arrangement_wa,leaf_blade_margin_general_wa,leaf_durati

on_wa,armature_wa&habitat_general=terrestrial&plant_habit_wa=tree&leaf_type_gen

eral_wa=simple&leaf_arrangement_wa=1%20leaf%20per%20node&leaf_blade_margin

_general_wa=toothed&leaf_duration_wa=deciduous%20or%20marcescent&armature_

wa=absent&_view=photos&_show=plant%20form

15

[6] Lawrence, Rick L., Shana D. Wood, and Roger L. Sheley. "Mapping invasive plants using

hyperspectral imagery and Breiman Cutler classifications (RandomForest)." Remote

Sensing of Environment 100.3 (2006): 356-362.

[7] Goodfellow, Ian, Yoshua Bengio and Aaron Courville. Deep Learning. Cambridge,

Massachusetts, MIT Press, 2016. http://www.deeplearningbook.org

[8] Nielsen, Michael A. Neural networks and deep learning. Vol. 25. USA: Determination

press, 2015.

[9] “Invasive Plants.” Forest Service Shield, U.S. Forest Service,

www.fs.fed.us/wildflowers/invasives/.

Appendix

Appendix A: Acknowledgements

I would like to acknowledge Dr. Paul Talaga for his help on this project. As my advisor he

has been a great resource for troubleshooting or just to discuss new ideas. This project would

not have been possible without him.

Appendix B: leaf_id.py

-*- coding: utf-8 -*-
"""leaf_id.ipynb
Author: Evan Parduhn
Description: This script is used to train an artificial neural network to categorize
 leaves according to their venation patterns
Automatically generated by Colaboratory.

Original file is located at
 https://colab.research.google.com/drive/1goioTPOEeN8p4QkvPZLDrbbJsnrn_BoS
"""

16

from __future__ import absolute_import, division, print_function, unicode_literals
Install TensorFlow
import tensorflow as tf
from google.colab import drive
import os
import math
import numpy as np
import cv2
import pandas as pd
import matplotlib.pyplot as plt
import PIL
This needs to be catered to the users Google drive. the ls only serve as a manual check
drive.mount('/content/drive')
!ls "/content/drive/Shared drives/"
!ls "/content/drive/Shared drives/EvanLeafSnap/"
!ls "/content/drive/Shared drives/EvanLeafSnap/leafsnap-dataset"
!ls "/content/drive/Shared drives/EvanLeafSnap/Vein_Identifier"

This function takes a filename and parses out the extra characters and returns just the name
of the species. This was made specifically for the data set I created so it may need to be changed
def parseName(filename):
 fl = filename[:-5]
 if(fl[-2].isdigit()):
 fl = fl[:-2]
 elif(fl[-1].isdigit()):
 fl = fl[:-1]
 return fl
fp = "/content/drive/Shared drives/EvanLeafSnap/Vein_Identifier/Test"
iname = ""
im_dict = {} # Keeps track of the number samples for each species found
tr_dict = {} # Contains a list of the samples for each species in the training list
te_dict = {} # Contains a list of the samples for each species in the testing list
dy = {} # This is the answer key
i=0

for filename in os.listdir(fp):
 fl = parseName(filename)

17

 if(fl not in im_dict.keys()):
 im_dict[fl] = 1
 tr_dict[fl] = []
 te_dict[fl] = []
 dy[fl] = i
 i+=1
 elif(fl in im_dict.keys()):
 im_dict[fl] += 1
 # This find the minimum number of samples to a species
 # I did this so that the number of samples across both lists would remain the samples
 # to hopefull prevent scewed results
 i_min = min(im_dict.values())
 train_num = int(i_min * .8)
 test_num = int(i_min * .2)

print(train_num,test_num) Used to debug
print(dy)

Finds the histogram of and image and returns it
def genHist(fn):
 im = PIL.Image.open(fn)
 im = np.array(im)
 hist,bins = np.histogram(im,bins=255, range=(0,255))
 return hist

Finds the edges in an image and creates a new image with just the edges
Returns the sum of the new image which is the area of the edges
def genEdges(fn):
 img = cv2.imread(fn)
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 edges = cv2.Canny(gray,20,50,apertureSize = 3)
 return np.sum(np.asarray(edges))

Uses genEdges to find the area of veins and returns that over the area of the leaf
def genRatio(fn):
 im = PIL.Image.open(fn)
 im = np.array(im)
 area = 0

18

 for arr in im:
 for p in arr:
 if(p.any() != 0):
 area += 1
 return int(genEdges(fn) / area)

curr_name = ""
x arrays contain samples, y arrays contain the names
x_train = []
x_test = []
y_train = []
y_test = []

Evenly distributes samples into the training and testing arrays
for filename in os.listdir(fp):
 fl = parseName(filename)
 if(len(tr_dict[fl]) < train_num):
 x_train.append(np.append(genHist(fp + '/' + filename),genRatio(fp + '/' + filename)))
 y_train.append(dy[fl])
 tr_dict[fl].append(genHist(fp + '/' + filename))
 elif(len(tr_dict[fl]) >= train_num and len(te_dict[fl]) <= test_num):
 x_test.append(np.append(genHist(fp + '/' + filename),genRatio(fp + '/' + filename)))
 y_test.append(dy[fl])
 te_dict[fl].append(filename)
You have to convert these to numpy arrays so they work with TensorFlow
Yes I know that numpy has an append function, but its confusing and I hate it
x_train = np.asarray(x_train)
x_test = np.asarray(x_test)
y_train = np.asarray(y_train)
y_test = np.asarray(y_test)
print(len(x_train),len(x_test),len(y_train),len(y_test)) # for debugging

These are useful functions if you want to send whole images to TensorFlow
I did not do that for the final implementation, but they are here for future implementations

Finds and returns the max shape in the training and testing arrays
def findMaxShape(arr_tr, arr_ts):
 ms = [0,0]

19

 for im in arr_tr:
 if(im.shape[0] > ms[0]):
 ms[0] = im.shape[0]
 if(im.shape[1] > ms[1]):
 ms[1] = im.shape[1]
 for im in arr_ts:
 if(im.shape[0] > ms[0]):
 ms[0] = im.shape[0]
 if(im.shape[1] > ms[1]):
 ms[1] = im.shape[1]
 return ms

adds padding to the samples according to the max shape returned by findMaxShape
Funny how the function names say exactly what they do
This is necessary because TensorFlow likes its training samples to all be the same size
def addPadding(arr_tr, arr_ts):
 ms = findMaxShape(arr_tr,arr_ts)
 n_tr = []
 n_ts = []
 for im in arr_tr:
 hd = ms[0] - im.shape[0]
 wd = ms[1] - im.shape[1]
 nim = np.pad(im,((0,hd),(0,wd)),'minimum')
 n_tr.append(nim)
 for im in arr_ts:
 hd = ms[0] - im.shape[0]
 wd = ms[1] - im.shape[1]
 nim = np.pad(im,((0,hd),(0,wd)),'minimum')
 n_ts.append(nim)
 return np.asarray(n_tr),np.asarray(n_ts)
print(len(x_train),len(x_test),len(y_train),len(y_test)) # more debugging

Creates the training model in TensorFlow. Trains and then tests. I also added a predict
to see more detailed results
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(256,)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),

20

 tf.keras.layers.Dense(len(dy), activation='softmax')
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])
model.fit(x_train, y_train, epochs=200)
model.evaluate(x_test, y_test, verbose=2)
model.predict(x_test)

